epdf.pub_economics-for-south-african-students-5th-edition.pdf - PDFCOFFEE.COM (2024)

Economics for South African students

FIFTH EDITION

3KLOLS0RKUDQGDVVRFLDWHV

9DQ6FKDLN 38%/,6+(56

Published by Van Schaik Publishers A division of Media24 Books 1059 Francis Baard Street Hatfield, Pretoria All rights reserved Copyright © 2015 Van Schaik Publishers No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means – electronic, mechanical. photocopying, recording or otherwise – without written permission from the publisher, except in accordance with the provisions of the Copyright Act, 98 of 1978.

Please contact DALRO for information regarding copyright clearance for this publication. Any unauthorised copying could lead to civil liability and/or crimincal sanctions. Tel: 086 12 DALRO (from within South Africa) or +27 (0)11 712 8000 Fax: +27 (0)11 403 9094 Postal address: PO Box 31627, Braamfontein, 2017, South Africa www.dalro.co.za

First edition1995 Second edition 2000 Third edition 2004 Fourth edition 2008 Fifth edition 2015 Converted to EBook 2015 Print ISBN 978 0 627 03342 1 eISBN 978 0 627 03343 8 Commissioning editor Julia Read Production manager Werner von Gruenewaldt Editorial manager Daleen Venter Copy editor Yvonne Kemp Proofreader Yvonne Kemp Cover design by Werner von Gruenewaldt Illustrations by Jon Inggs Typeset in 9.3pt on 11pt Century Old Style by Pace-Setting & Graphics, Pretoria Printed and bound by Paarl Print eBook conversion by Gesina Retief Every effort has been made to obtain copyright permission for material used in this book. Please contact the publisher with any queries in this regard. Website addresses and links were correct at time of publication.

CONTENTS Preface ............................................................................ x To the student. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter 1 What economics is all about 1.1 What is economics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Scarcity, choice and opportunity cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Illustrating scarcity, choice and opportunity cost: the production possibilities curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Further applications of the production possibilities curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Economics is a social science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Microeconomics and macroeconomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.7 Positive and normative economics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.8 A few points to note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Appendix 1-1: Basic tools of economic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Chapter 2 Economic systems 2.1 Different economic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 The traditional system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 The command system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 The market system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 The mixed economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 South Africa’s mixed economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 The men behind the systems: Smith, Marx and Keynes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 3 Production, income and spending in the mixed economy 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Production, income and spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Sources of production: the factors of production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Sources of income: the remuneration of the factors of production . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Sources of spending: the four spending entities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Putting things together: a simple diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Illustrating interdependence: circular flows of production, income and spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 A few further key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix 3-1: South Africa’s factor endowment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 4 Demand, supply and prices 4.1 Demand and supply: an introductory overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Market equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Consumer surplus and producer surplus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26 26 26 28 30 33 33 37 40 40 42 45 46 49 50 53 55 57 60 61 68 75 77

Appendix 4-1: Algebraic analysis of demand and supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Chapter 5 Demand and supply in action 5.1 Changes in demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 Changes in supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3 Simultaneous changes in demand and supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4 Interaction between related markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.5 Government intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.6 Agricultural prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7 Speculative behaviour: self-fulfilling expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Chapter 6 Elasticity 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 A general definition of elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 The price elasticity of demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Other demand elasticities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 The price elasticity of supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6 Elasticity: a summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

104 104 104 115 116 119 119

Chapter 7 The theor y of demand: the utility approach 7.1 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Marginal utility and total utility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Consumer equilibrium in the utility approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Derivation of an individual demand curve for a product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Comments on the utility approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

122 122 123 127 130 131

Chapter 8 The theor y of demand: the indifference approach 8.1 Ordinal and cardinal utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Indifference curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 The budget line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 Consumer equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5 Changes in equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

134 134 137 138 139 142

Chapter 9 Background to supply: production and cost 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Basic cost and profit concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 Production in the short run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 Costs in the short run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5 Production and costs in the long run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

144 146 148 153 157 162 162

Chapter 10 Market structure 1: Over view and perfect competition 10.1 Market structure: an overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10.2 The equilibrium conditions (for any firm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Perfect competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 The demand for the product of the firm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 The equilibrium of the firm under perfect competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6 The supply curve of the firm and the market supply curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7Long-run equilibrium of the firm and the industry under perfect competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8 Perfect competition as a benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

165 166 168 170 173 174 177 178 178

Chapter 11 Market structure 2: monopoly and imperfect competition 11.1 Monopoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Monopolistic competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Oligopoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Comparison of monopoly and imperfect competition with perfect competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5Policy with regard to monopoly and imperfect competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

197 202 204 205

Chapter 12 The factor markets: the labour market 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 The labour market versus the goods market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 A perfectly competitive labour market. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4 Imperfect labour markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 Wage differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix 12-1: Other factor markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

208 209 210 216 225 229 231

Chapter 13 Measuring the performance of the economy 13.1 Macroeconomic objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2 Measuring the level of economic activity: gross domestic product . . . . . . . . . . . . . . . . . . . . . . . . . 13.3 Other measures of production, income and expenditure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4Measuring employment and unemployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5Measuring prices: the consumer price index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.6 Measuring the links with the rest of the world: the balance of payments . . . . . . . . . . . . . . . . . . . . 13.7 Measuring inequality: the distribution of income. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

234 235 241 244 246 249 252 254

Chapter 14 The monetar y sector 14.1 The functions of money . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2 Different kinds of money. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3 Money in South Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4 Financial intermediaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5 The South African Reserve Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.6 The demand for money . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

256 257 259 260 261 262

180 188 192

14.7 The stock of money: how is money created?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.8 Monetary policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.9 Bank supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix 14-1: Keynes’s speculative demand for money . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

267 268 271 272 272 273

Chapter 15 The government sector 15.1 The government or public sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2 The role of government in the economy: an overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3 Market failure (as justification for government intervention) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4 Further reasons for government intervention in the economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.5 How does government intervene? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.6 Government failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.7 Nationalisation and privatisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.8 Fiscal policy and the budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.9 Government spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.10 Financing of government expenditure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.11 Taxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.12 Tax incidence: who really pays the taxes?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

276 276 277 284 286 287 288 289 290 292 293 296 297

Chapter 16 The foreign sector 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2 Why countries trade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3 Trade policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.4 Exchange rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 The terms of trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

300 301 304 304 311 312

Chapter 17 A simple Keynesian model of the economy 17.1 Production, income and spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2 The basic assumptions of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.3 Consumption spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.4 Investment spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.5 The simple Keynesian model of a closed economy without a government . . . . . . . . . . . . . . . . . . . 17.6 The algebraic version of the simple Keynesian model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.7 The impact of a change in investment spending: the multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.8 The simple Keynesian model: a brief summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix 17-1: An algebraic derivation of the multiplier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

314 316 317 322 324 327 328 333 335 336

Chapter 18 Keynesian models including the government and the foreign sector 18.1 Introducing the government into our model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2 Introducing the foreign sector into the model: the open economy . . . . . . . . . . . . . . . . . . . . . . . . . 18.3 The impact of the government and the foreign sector: a brief summary . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

338 348 355 357

Chapter 19 More on macroeconomic theor y and policy 19.1 The aggregate demand-aggregate supply model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2 The monetary transmission mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3 Monetary and fiscal policy in the AD-AS framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.4 Other approaches to macroeconomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

360 367 372 375 380

Chapter 20 Inflation 20.1 Definition of inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2 The measurement of inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3 The effects of inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.4 The causes of inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.5 Anti-inflation policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

382 382 384 388 395 398

Chapter 21 Unemployment 21.1 Unemployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 21.2 Unemployment and inflation: the Phillips curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 Chapter 22 Economic growth and business cycles 22.1 The definition and measurement of economic growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.2 The business cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.3 Sources of economic growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.4 Some fundamental causes of low economic growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index

410 411 414 416 417

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

PREFACE This fifth edition of Economics for South African students is a restructured, thoroughly revised and updated version of the popular fourth edition. The major and greatest number of changes are in what used to be Part I. The previous Chapter 6 has been abbreviated and is now an appendix to a revised Chapter 1. The new Chapter 2 focuses exclusively on economic systems, while Chapter 3 includes material from the previous Chapters 1 to 3. Chapter 4, on the measurement of the performance of the economy, becomes Chapter 13, as part of the broad restructuring of the book. Chapter 5, on the South African economy, is omitted, but will be replaced by a similar chapter, which will be available electronically to lecturers who prescribe the book and which will be updated annually. In addition, all the tables in the book that contain current economic data will also be updated annually and provided to lecturers who prescribe the book. Like its predecessors, this edition covers the full spectrum of economic issues, while emphasising the institutional features of the South African economy. The latter are presented together with standard economic theory to give students an introduction to economics that they can relate to the world around them. The emphasis is on relevance, but rigour is not sacrificed. An important feature of the book is the liberal use of practical examples and additional explanations of important concepts and issues, which are presented as boxed text. These increase the topicality and relevance of the text without interrupting the main thread. Each chapter of the book starts with an introductory page outlining the purpose and content of the chapter, including some learning outcomes. The most important concepts are listed at the end of each chapter in more or less the order in which they appear in the text. The sections, tables, boxes and figures are numbered according to the chapters. For example, Box 2-6 is the sixth box in Chapter 2 and Section 14.2 is the second section of Chapter 14. This numbering system is used to facilitate cross-referencing. Lecturers who are familiar with the book will notice that the review questions have been omitted. Most of them can now be found (along with answers) in the extensive range of support material that is available to lecturers who prescribe the book. The material includes PowerPoint slides of all the tables and figures, as well as lecturing notes. There is also an extensive question bank, which contains hundreds upon hundreds of graded multiple-choice questions and answers and many review questions and answers. Further support material, including South African case studies, is also being developed, as well as a list of definitions of key concepts. In addition, there is also the South African workbook for economics (see the back cover of this book).

To the student Courses and modules in economics are typically regarded as being among the most challenging of all those presented at universities, universities of technology, business schools and other tertiary institutions. But studying economics can be fun, provided that you approach it correctly. Economics is not a subject that you can study by simply reading the material or trying to memorise it. Such an approach is simply not effective with this subject. You have to try to understand it. Because students who study economics come from widely varying backgrounds, we have not assumed that you have any prior knowledge of economics. We start from scratch and provide fairly detailed explanations, particularly as far as the most fundamental concepts and theories are concerned. As a result, some of the chapters are quite long. We believe that clear and detailed explanations are better than more concise explanations that might be more difficult to follow. Since it is so important to understand what you are learning, we think longer may prove to be quicker and easier. Gary Player, the famous South African golfer, once remarked that “the more I practise, the luckier I get”. The same applies in economics. You have to practise, that is, study actively. Always study with a pen or pencil, working through the arguments, drawing the graphs and summarising the main points. For this book you need no mathematics beyond simple high school algebra. In fact, the only requirements are a basic knowledge of arithmetic and the ability to solve a simple equation and understand a graph. Thus if you do not have any formal training in mathematics you should not feel alarmed by the symbols, equations and graphs. They are simply shorthand ways of expressing economic variables, relationships and theories. When you use the symbols, equations and graphs, you must always remember what economic variables and relationships they represent – this is a book about economics, not about algebra or geometry.

x

Follow the economics news in the newspapers and on television, and try to relate it to what you are learning. You will be surprised how much you can understand by combining the basic tools of economic analysis with some common sense. Many renowned economists have commented that of all the courses in economics, the introductory course is the most useful. A textbook is written, first and foremost, for students, not for lecturers. We trust that you will find this book useful and that you will derive some pleasure from using it.

Acknowledgements I wish to thank Louis Fourie, my long-time friend and co-author, for reading and commenting on the entire manuscript, as well as Willie le Roux, for a number of incisive and useful comments on various parts of the book. Elna van Rensburg did the word-processing, while Yvonne Kemp served as copy editor and proofreader and, as always, the A Team lived up to their name. Thanks are also due to Leanne Martini and the staff at Van Schaik Publishers. PHILIP MOHR [emailprotected] October 2014

xi

What economics is all about

Chapter overview 1.1 What is economics? 1.2 Scarcity, choice and opportunity cost 1.3 Illustrating scarcity, choice and opportunity cost: the production possibilities curve 1.4 Further applications of the production possibilities curve 1.5 Economics is a social science 1.6 Microeconomics and macroeconomics 1.7 Positive and normative economics 1.8 A few points to note Appendix 1-1: Basic tools of economic analysis Important concepts

Economics is a study of mankind in the ordinary business of life. ALFRED MARSHALL

Economics is the art of making the most out of life. GEORGE BERNARD SHAW

Economics is the only profession in which one can gain great eminence without ever being right. GEORGE MEANY

Learning outcomes Once you have studied this chapter you should be able to 䡲 explain what economics is all about 䡲 define economics 䡲 define the important concept of opportunity cost 䡲 describe a production possibilities curve or frontier 䡲 distinguish between microeconomics and macroeconomics 䡲 distinguish between positive and normative economics 䡲 explain why economics is a social science 䡲 identify some common mistakes in reasoning about economics

In this chapter we introduce you to economics. We first use a number of examples to indicate what economics is all about and we then introduce the important concepts of scarcity, choice and opportunity cost. We explain these concepts with the aid of a production possibilities cur ve. Next we use production possibilities curves to illustrate different situations. We explain why economics is a social science, the difference between microeconomics and macroeconomics, and the difference between positive and normative economics. This is followed by a discussion of some common mistakes in reasoning about economics. The chapter also has an appendix which explains some of the basic tools of economic analysis.

1

1.1 What is economics? Sixty years ago economics was not as familiar a term in South Africa as it is today. The political debate was dominated by racial issues. There was no television, and economic journalism was in its infancy. There were few periodicals that dealt with economic issues, and economic matters received little coverage in the newspapers. Students who went to university to study subjects like accounting, statistics and management found that they also had to study economics, but they usually had no idea what the study of economics would entail. All this has changed. Nowadays everyone has heard about economics and everyone knows that it is important. Economic affairs play an important role in the political debate, and economic issues are reported and analysed every day on television. There are a number of weekly and monthly periodicals, many websites and even television channels that deal almost exclusively with economic issues. Every newspaper has a large section which focuses on economic and financial matters. Economics is taught in our schools and many students go to university specifically to study economics. There is thus a much greater awareness of economic issues today than at any time in the past. But this does not mean that people know what economics is all about. Many people are convinced that economics is concerned only with making money. Some believe that economics is concerned mainly with buying and selling shares on the JSE. Others think that economics is the study of balance sheets and profit statements. All these views, however, are extremely narrow and do not capture the essence of what economics is all about. What then is economics? What is it concerned with? The two definitions of economics quoted on the previous page indicate that it is a wide-ranging discipline. These definitions point to the fact that the subject is concerned with virtually every aspect of human existence. The following example gives some indication of the wide-ranging nature of economics, and of the types of questions and issues that it is concerned with. Let us take a fictitious character – we shall call him Simon Mokgatle – who lives in Diepkloof. And let us think about some of the decisions that he has to make once he has finished his secondary education. Should he continue with his studies at a residential university of technology or university, or should he try to find a full-time job? Or should he try to find a job while at the same time continuing his studies through Unisa? If he is going to further his studies, which field of study should he choose? If he decides to try and find a job, what type of job should he apply for? What type of transport should he use to travel to work or lectures: a taxi, a bus or a train? What should he wear when he goes to work or when he attends lectures? If he opts for and finds a job, how should he spend his first pay cheque? If he cannot find a job and cannot afford to study further or obtain a bursary, what should he do? Should he remain in Diepkloof and continue looking for work or should he move to another area or town in pursuit of employment? If he does find a job and also enrols as a student at Unisa, what should he do on a Saturday night – study, watch television or go to the movies? The list is virtually endless. Simon has to make choices every day of his life. And this is what economics is essentially about. It deals with the choices that people have to make – what to eat, what to wear, what career to pursue. The word economics is derived from the Greek words oikos, meaning house and némein, meaning manage. Economics is thus the science of household management and as such is indeed concerned with the ordinary business of life. But economics is concerned not only with the choices that individuals like Simon Mokgatle have to make. It also studies the decisions of businesses, government and other decision makers in society. Should Toyota expand its production of motorcars? Should Burger King increase the price of its hamburgers? Or should it rather reduce the price in an attempt to increase sales? Should government spend more on education or on housing? Or should health be a greater priority? And what about safety and security? Should taxes be raised or lowered? Should the government raise more taxes through the value-added tax (VAT) and less through personal income tax? Should more basic necessities carry a zero VAT rate to help the many poor people in South Africa? Or should the government rather subsidise the prices of necessities such as bread and maize, or perhaps even hand out food parcels to the needy? Should the South African Reserve Bank raise interest rates? Or should rates be kept unchanged? Like Simon, businesses and government also have to make choices every day. But why are these choices necessary? This brings us to the basic fact of economic life – scarcity. Without scarcity it would not be necessary to make choices. Individuals, businesses and government all want to do many things, but the means with which these wants can be met are limited. Wants are plentiful – we all want a lot of things – but the means are scarce. We therefore have to make choices all the time. The relationship between unlimited wants and scarce resources is so central to economics that most definitions of economics focus almost exclusively on this relationship. A few definitions are listed in Box 1-1. The definitions in the box are all by authors of well-known introductory economics textbooks. Apart from these definitions and that of Marshall given at the beginning of the chapter, two of the most widelyquoted ones are those of Jacob Viner and Lionel Robbins. Viner (1892–1970), a well-known 20th century American 2

C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

BOX 1-1 SOME DEFINITIONS OF ECONOMICS Economics is the study of how our scarce productive resources are used to satisfy human wants. George Leland Bach

Economics is the study of how society manages its scarce resources. N Gregory Mankiw

Economics is the study of how individuals and societies choose to use the scarce resources that nature and previous generations have provided. Karl Case and Ray Fair

Economics is concerned with the efficient use or management of limited productive resources to achieve maximum satisfaction of human material wants. Campbell McConnell

Economics is the study of how scarce resources are allocated among various uses. Richard Eckhaus Economics is the study of how people allocate their limited resources to provide for their wants. Jack Harvey Economics is the study of how individuals and groups of individuals respond to and deal with scarcity. James Kearl Economics is the study of the use of scarce resources to satisfy unlimited human wants. Richard Lipsey

Economics is the study of how people use their limited resources to try to satisfy unlimited wants. Michael Parkin Economics is the study of how societies use scarce resources to produce valuable commodities and distribute them among different people. Paul Samuelson Economics is the study of how individuals, firms, governments and other organizations within our society make choices and how those choices determine how the resources of society are used. Joseph Stiglitz

economist, simply stated that “economics is what economists do.” This is quite a catchy definition, but it is not a particularly useful one. Lionel Robbins (1898–1984), a prominent 20th century British economist, set the tone for most modern definitions in the 1930s by defining economics as “the science which studies human behaviour as a relationship between ends and scarce means which have alternative uses”. We shall not try to provide yet another definition of economics. It should be obvious that economics has to do with the use of scarce resources to satisfy unlimited wants. The central elements of economics are therefore scarcity and choice. Although scarcity and choice lie at its heart, economics is not merely concerned with the types of choice indicated earlier. Economics also seeks to describe, explain, analyse and predict a variety of phenomena such as economic growth, unemployment, inflation, trade between individuals and countries, the prices of different goods and services, poverty, wealth, money, interest rates, exchange rates and business cycles. Consider the following questions: tù8IBUEFUFSNJOFTUIFQSJDFPGQFUSPM 8IZEPFTUIFQFUSPMQSJDFJODSFBTFGSPNUJNFUPUJNF 8IBUBSFUIFFGGFDUT of such increases on individuals, households, businesses, government and society at large? tù8IBUJTNPOFZ )PXJTJUDSFBUFE )PXEPDIBOHFTJOUIFBNPVOUPGNPOFZJOUIFDPVOUSZBGGFDUUIFWBSJPVT participants in the economy (households, businesses, etc)? tù8IBUBSFJOUFSFTUSBUFT 8IZBSFUIFZJNQPSUBOU 8IZBSFJOUFSFTUSBUFTSBJTFEPSMPXFSFEGSPNUJNFUPUJNF How do such changes affect households, businesses and government? tù8IBUJTVOFNQMPZNFOU 8IBUDBVTFTVOFNQMPZNFOU 8IBUDBOUIFHPWFSONFOUEPUPSFEVDFVOFNQMPZNFOU tù8IBUJTJOnBUJPO %PFTJOnBUJPOIBWFBOZUIJOHUPEPXJUIVOFNQMPZNFOU

CH A P T ER 1 W H A T E C ONOM ICS IS ALL ABOUT

3

tù8IZIBTUIFSBOEPGUFOEFQSFDJBUFETIBSQMZBHBJOTUUIFNBKPSJOUFSOBUJPOBMDVSSFODJFTTVDIBTUIF64EPMMBSBOE the euro? tù8IBU JT UIF EJGGFSFODF Cf*ckFFO DBQJUBMJTN BOE TPDJBMJTN "OE Cf*ckFFO TPDJBMJTN BOE DPNNVOJTN 8IZ EJE communism collapse in Eastern Europe towards the end of the 1980s? tù8IBU JT OBUJPOBMJTBUJPO )PX EPFT JU EJGGFS GSPN QSJWBUJTBUJPO 8IZ BSF TPNF HPPET BOE TFSWJDFT TVDI BT electricity provided by government-owned institutions while other goods and services are provided by privatelyowned firms? tù8IZIBWFDFSUBJO"TJBOFDPOPNJFTFYQBOEFETPSBQJEMZ 8IZIBWFNPTU"GSJDBODPVOUSJFTOPUGBSFEFRVBMMZ well? tù8IZBSFDFSUBJOQSPWJODFTJO4PVUI"GSJDBTPNVDISJDIFSUIBOPUIFST 8IZBSFTPNF4PVUI"GSJDBOTSJDIFSUIBO others? tù8IBUBSF4PVUI"GSJDBTFDPOPNJDQSPTQFDUT 8JMMUIFDPVOUSZQSPTQFSBOECFBCMFUPQSPWJEFBCFUUFSMJGFGPSBMM Or will the economy stagnate or decline? These are just some of the issues that economics is concerned with.

1.2 Scarcity, choice and opportunity cost Economics is concerned with scarcity. The basic fact of economic life is that there are simply not enough goods and services to satisfy everyone’s wants. Wants are unlimited but the means with which the wants can be satisfied are limited. Note that wants are not the same as needs and demand: tùWants are human desires for goods and services. Our wants are unlimited – we all want everything. For example, we would all want to own a fully-equipped, fully-serviced luxury villa in each of the ten most beautiful places in the world. As individuals and as a society we always want or desire more or better goods and services. Individuals have biological, spiritual, material, cultural and social wants while people as a group have collective wants for things such as law and order, justice and social security. tùNeeds are necessities, the things that are essential for survival, such as food, water, shelter and clothing. Needs, unlike wants, are not absolutely unlimited. For example, it is possible to calculate the basic needs which have to be met if a person or household is to survive. tùDemand differs from wants, desires or needs. There is a demand for a good or service only if those who want to purchase it have the necessary means to do so. In other words, demand has to be backed by purchasing power. Demand is studied in detail in Chapters 4 to 8. Now that we have examined wants, let us see why we say that resources are limited. There are three types of resources: natural resources (such as agricultural land, minerals and fishing resources), human resources (such as labour) and man-made resources (such as machines). These resources are the means with which goods and services can be produced. In economics we call these resources factors of production. Since the resources are limited, it follows that the goods and services with which we can satisfy our wants are also limited. The factors of production are discussed in Chapter 3. All individuals and societies are confronted by the problem of unlimited wants and limited means. They therefore have to make choices. tù)FOESJL.BUIJCFMBHPFTUPUIFTIPQXJUI3JOIJTQPDLFU)FXBOUTBOJDFDSFBN BDPPMESJOL BDIPDPMBUFBOE a packet of chips. But his resources are limited. He cannot buy all the things he wants with the R15. He therefore has to choose what to buy and what to sacrifice. tù*UJT4BUVSEBZOJHIU"OOFWBOEFS.FSXFIBTUPTUVEZGPSBOFYBNJOBUJPOPO8FEOFTEBZ4IFBMTPXBOUTUPXBUDI television, go to the movies and visit her friends. But she cannot do all these things at the same time. She has to choose what to do and what not to do. tù5IF4PVUI"GSJDBOHPWFSONFOUIBT TBZ 3CJMMJPOUPTQFOEPOOFXEFWFMPQNFOUQSPHSBNNFTEVSJOHBHJWFO financial year. It wants to provide houses, jobs, free health services and free education for all needy South Africans. But the resources are limited. The government has to decide what it will do immediately and what will have to be postponed until later years. In all these cases difficult choices have to be made. Some wants will be satisfied but many will be left unsatisfied. In each case it has to be decided which of the available alternatives will have to be sacrificed. Economic decisions are all difficult. The fact that we live in a world of scarcity forces us to make difficult choices. 4

C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

When resources are used to produce a certain good, they are not available to produce other goods. A decision to produce more of one good therefore also means that less of another good can be produced. Similarly, a student who decides to study while holding down a job has to sacrifice a lot of other things if he or she is to succeed in obtaining a degree. As the proverb says: “You cannot have your cake and eat it.” Because resources are scarce, the use of resources can never be costless. There are always costs involved even if these costs are not always apparent to the consumer of the goods or services in question. To emphasise this point, economists made up a principle, which they call the TANSTAAFL principle. TANSTAAFL is an acronym for “There ain’t no such thing as a free lunch”. Someone always has to pay. Other opportunities always have to be sacrificed. The main point of this principle is that there are always costs involved in any use of scarce resources. Because economics deals with scarcity it is not a popular science. More than a century ago Thomas Carlyle called it the “dismal science”. “This science,” he said, is “not a gay science … no, a dreary, desolate and indeed quite abject and distressing one; what we might call, by way of eminence, the dismal science.” The 1950s Russian leader, Nikita Khrushchev, was also fond of reminding us that “economics is a subject that does not greatly respect one’s wishes.” Because economists frequently have to emphasise scarcity and the need for hard, unpopular decisions, they are generally not a popular group of people. They are frequently the ones who have to bring the bad news. For example, economists often have to remind politicians that many of their well-meant spending programmes are simply not achievable. Scarcity must not be confused with poverty. Scarcity affects everyone. The rich are also subject to scarcity. Even the richest person on earth will have unsatisfied wants and will have to make economic decisions. For example, no matter how rich you are in terms of money or material wealth, you only have 24 hours a day in which to sleep, eat, work and relax. Everyone has to deal with the fact that time is a limited resource. In our earlier examples, Hendrik Mathibela, Anne van der Merwe and the South African government were all faced with difficult choices between different alternatives. This is what the economic problem is all about. When we are faced with such a choice we can measure the cost of the alternative we have chosen in terms of the alternatives that we have to sacrifice. This is called opportunity cost. When there are only two alternatives, the opportunity cost is quite straightforward. For example, if Anne only has to choose between studying and going to the movies, the opportunity cost of studying would be the visit to the movies that she has to forgo. Likewise, if Hendrik only has to choose between a cool drink and a chocolate, the opportunity cost of the cool drink would be the chocolate which he has to sacrifice (assuming that he cannot afford both). When there are more than two alternatives, the opportunity cost is somewhat more complicated. We then measure the opportunity cost of a particular alternative in terms of the best alternative that has to be sacrificed. The opportunity cost of a choice is the value to the decision maker of the best alternative that could have been chosen but was not chosen. In other words, the opportunity cost of a choice is the value of the best forgone opportunity. Ever y time a choice is made, opportunity costs are incurred and economists always measure costs in terms of opportunity costs. For the economist the cost of something is what you have to give up to get it. Opportunity cost is one of the most important concepts in economics since it captures the essence of the problems of scarcity and choice. It is also an essential element of the economic way of thinking. Economists do not only consider explicit monetary costs (often called accounting costs). They also consider implicit costs, always asking how the scarce resources could have been used alternatively.

1.3 Illustrating scarcity, choice and opportunity cost: the production possibilities curve Scarcity, choice and opportunity cost can be illustrated with the aid of a production possibilities cur ve, also called a production possibilities frontier. Consider an isolated rural community along the Wild Coast whose main foods are potatoes and fish. The people have found that by devoting all their available time and other resources to fishing, they can produce 5 baskets of fish per working day. On the other hand, if they spend all their production time gardening, they can produce 100 kilograms (kg) of potatoes per working day. It is possible for them to produce either 5 baskets of fish or 100 kg of potatoes, but in each case the entire production of the other good must be sacrificed. The only way that the inhabitants can enjoy a diet which includes both fish and potatoes is by using some of their resources for fish production, and some for potato production. Resources must be shifted from one production possibility to produce the other. By experimentation, they find that it is possible for them to produce any of the combinations shown in Table 1-1. These combinations represent the maximum amounts which can be produced with all the available resources. If the people decide to produce combination E, they will be able to produce 4 baskets of fish and 40 kg of potatoes per day. But in producing this combination they have had to decide not to produce more fish or more potatoes. In producing 4 baskets of fish, they have had to forgo the additional 60 kg of potatoes which they could have produced if they had used all their resources to grow potatoes. Likewise, in CH A P T ER 1 W H A T E C ONOM ICS IS ALL ABOUT

5

producing 40 kg of potatoes they have decided to forgo the TABLE 1-1 Production possibilities for the Wild extra (5th) basket of fish which they might have produced. Coast community The opportunity cost of producing the 40 kg of potatoes is the basket of fish; and the opportunity cost of producing the 4 Fish Potatoes Possibility baskets of fish is the 60 kg of potatoes that have to be forgone. (baskets per day) (kg per day) The community therefore has to choose between more A 0 100 potatoes and less fish, or more fish and less potatoes. Given B 1 ́ the available resources, it is impossible to produce more of C 2 ́ one good without decreasing the production of the other good. D 3 ́ The different alternatives can be illustrated graphically E 4 ́ in a production possibilities cur ve as in Figure 1-1. The F ́́ curve shows the possible levels of output in an economy with limited resources and fixed production techniques. If you find it difficult to understand or “read” Figure 1-1, turn to Appendix 1-1 at the end of this chapter, where we explain graphs in more detail. Fish production is measured along the horizontal axis and potato production on the vertical axis. The combinations in the table are represented by points A, B, C, D, E and F in the diagram. Note that we have joined the different points to form a curve. This actually implies that there are also other possible combinations apart from the six that are given in Table 1-1. However, we focus only on these six points. The production possibilities cur ve indicates the combinations of any two goods or ser vices that are attainable when the community’s resources are fully and efficiently employed. As we move along the production possibilities curve from point A to point B through to point F, the production of fish increases while the production of potatoes decreases. To produce the first basket of fish the community has to sacrifice 5 kg of potatoes (from 100 to 95). To produce the second basket of fish the sacrifice is an additional 10 kg of potatoes (the difference between 95 and 85). To produce the third basket of fish an additional 15 kg of potatoes have to be forgone (the difference between 85 and 70). The opportunity cost of each additional basket of fish therefore increases as we move along the production possibilities curve. This is why the curve bulges outwards from the origin. The production possibilities curve is a very useful way of illustrating scarcity, choice and opportunity cost.

Figure 1-1 A production possibilities curve for the Wild Coast community Vertical axis

3RWDWRHVNJSHUGD\

100 95

B C

85

G D

H

70

E

40

0 Origin

A

F

)LVKEDVNHWVSHUGD\

Horizontal axis

The various points on the curve show the combinations of fish and potatoes that can be produced daily with the available resources.

6

C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

Scarcity is illustrated by the fact that all points to the right of the curve (such as G) are unattainable. The curve thus forms a frontier or boundary between what is possible and what is not possible. Choice is illustrated by the need to choose among the available combinations along the curve. Opportunity cost is illustrated by what we refer to as the negative slope of the curve, which means that more of one good can be obtained only by sacrificing the other good. Opportunity cost therefore involves what we call a trade-off between the two goods. Also note point H in the diagram. This point denotes 70 kg of potatoes and two baskets of fish. Such a combination is obtainable but inefficient. Why? Because more potatoes (85 kg) can be produced at C without sacrificing any production of fish. Alternatively more fish (3 baskets) can be produced at D without sacrificing any production of potatoes.

1.4 Further applications of the production possibilities curve We have seen that resources are limited and that choices have to be made. We illustrated the problems of scarcity, choice and opportunity cost by using a production possibilities cur ve, sometimes also called the production opportunity curve. Points A, B, C, D, E and F on the production possibilities curve in Figure 1-1 illustrated attainable and efficient combinations of potatoes and fish. Point G, beyond the curve, illustrated an unattainable combination and point H, inside the curve, illustrated an attainable but inefficient combination. The bulging shape of the curve also illustrated increasing opportunity costs: as we move along the curve more of the one good has to be sacrificed to obtain an extra unit of the other good. With a given level of resources and a given state of technology, the community can produce different combinations of potatoes and fish. But it cannot move beyond ABCDEF (or AF for short). That is why the curve is sometimes also called the production possibility boundar y or frontier. It indicates the maximum attainable combinations of the two goods, also called the potential output. In any economic system the first challenge is to produce one of the maximum attainable combinations of goods and services. In other words, the scarce resources should be used fully and as efficiently as possible. This occurs when it is impossible to produce more of the one good without sacrificing some production of the other good. On the production possibilities curve actual output is equal to potential output. The community would, of course, have preferred a combination beyond the production possibilities curve or frontier, such as G in Figure 1-1. Point G indicates a combination of 85 kg of potatoes and four baskets of fish. But any point beyond the curve is unattainable. Given the available resources and the current production techniques, a combination such as that indicated by G is impossible. However, the quantity of available resources may increase and/or production techniques may improve over time. If this happens, it can be illustrated by a production possibilities curve that shifts outwards. Such an outward movement illustrates economic growth. To explain this, we use a production possibilities curve which illustrates the production of consumer goods and capital goods, the two broad types of goods produced in the economy. See Box 1-2, which indicates the different types of goods and services in the economy. The potential production of consumer goods and capital goods can be increased in a number of possible ways.

BOX 1-2 GOODS AND SERVICES The purpose of economic activity is to satisfy human wants. Humans have different types of wants, including material wants and spiritual wants. Most wants are satisfied by goods and services. Goods are tangible objects like food, clothing, houses, books and motorcars. Services are intangible things like medical services, legal services, financial services, the services of an economics lecturer and the services provided by public servants. Because much of economics is concerned with the production and distribution of goods and services, it is often necessary to refer to the term “goods and services”. For the sake of convenience, however, we frequently refer to “goods” only when we really mean “goods and services”. We now look at different types of goods. Consumer goods and capital goods Consumer goods are goods that are used or consumed by individuals or households (ie consumers) to satisfy wants. Examples include food, wine, clothing, shoes, furniture, household appliances and motorcars. Capital goods are goods that are not consumed in this way but are used in the production of other goods.

CH A P T ER 1 W H A T E C ONOM ICS IS ALL ABOUT

7

Examples include all types of machinery, plant and equipment used in manufacturing and construction, school buildings, university residences, roads, dams and bridges. Capital goods do not themselves yield direct consumer satisfaction, but they permit more production and satisfaction in future. Choosing between producing consumer goods and producing capital goods therefore means making a choice between present and future consumption. However, like all other goods, capital goods have a limited lifetime. They are subject to wear and tear and may also become obsolete. Their value therefore depreciates over time. Capital goods are an important factor of production. See the discussion of the different factors of production in Chapter 3. Different categories of consumer goods Consumer goods can be classified into three groups: non-durable, semi-durable and durable. tNon-durable goods are goods that are used once only. Examples are food, wine, tobacco, petrol and medicine. tSemi-durable goods can be used more than once and usually last for a limited period. Examples are clothing, shoes, sheets and blankets and motorcar tyres. tDurable goods normally last for a number of years. Examples are furniture, refrigerators, washing machines, dishwashers and motorcars. Apart from purchasing goods, individuals and households can also satisfy some of their wants by purchasing services such as those listed earlier. Final goods and intermediate goods Final goods are the goods that are used or consumed by individuals, households and firms. A loaf of bread consumed by a household, for example, is a final good. Intermediate goods, on the other hand, are goods that are purchased to be used as inputs in producing other goods. Intermediate goods are thus processed further before they are sold to end users. Flour used by a baker is an intermediate good. The baker does not consume it. The flour is processed into bread, cake or something else. However, when a household purchases flour it is a final good since the purpose is to consume it in some form or another. Private goods and public goods A private good is a good that is consumed by individuals or households. All typical consumer goods (like food, clothes, furniture and motorcars) are private goods. The distinguishing feature of private goods is that consumption by others can be excluded. A public good, on the other hand, is a good that is used by the community or society at large. Consumption by individuals cannot be excluded. A traffic light, for example, is a public good. Other examples of public goods are national defence and weather forecasts. Economic goods and free goods An economic good is a good that is produced at a cost from scarce resources. Economic goods are therefore also called scarce goods. As one would expect, most goods are economic goods. A free good is a good that is not scarce and therefore has no price. Air, sunshine and sea water at the coast are usually regarded as free goods. Nowadays, however, air and sea water are often polluted, with the result that clean air and sea water are not always freely available. Some people regard all the gifts of nature as free goods, since they are not produced by humans. But in many instances it requires effort and cost to make them useful to humans. Minerals have to be mined and even water has to be stored and piped, often at great expense.

8

C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

Note also that some goods or services which are labelled “free” are not really free. The term “free education” is used to indicate that the pupils concerned do not have to pay for their education. But the education is not free in the economic sense since someone, for example the taxpayer, still has to pay for it. Remember the TANSTAAFL principle – “there ain’t no such thing as a free lunch”. hom*ogeneous and heterogeneous goods hom*ogeneous goods are goods that are all exactly alike. There are few examples of such goods in the real world. A fine ounce of gold is one example – one fine ounce is exactly the same as another. Heterogeneous or differentiated goods are goods that are available in different varieties, qualities or brands. Most goods are heterogeneous goods – even something like bread, which comes in different shapes, sizes and qualities. Think of virtually any good (eg shirts, shoes, smart phones, radios, meat, eggs) and you can immediately list different varieties or brands of that good.

FIGURE 1-2 Improved technique for producing capital goods A Consumer goods

t *G BO JNQSPWFE UFDIOJRVF GPS QSPEVDJOH DBQJUBM HPPET is developed, it will be possible to produce more capital goods with the available factors of production. The original production possibilities curve is illustrated in Figure 1-2 as AB. If we assume that the available factors of production and the technique for producing consumer goods remain the same, the maximum potential production of consumer goods remains at A. But the maximum potential output of capital goods (if all available resources are used to produce capital goods) increases from B to C. The new production possibilities curve is thus indicated by AC. Except at point A, it is now possible to produce more capital goods and more consumer goods than before. For example, at point Y more of both types of good are produced than at point X.

Y X

B

C

Capital goods t 4JNJMBSMZ JGBOFXUFDIOJRVFGPSQSPEVDJOHDPOTVNFSHPPET is developed, while the available resources and the technique for producing capital goods remain the same, the maximum An improved technique for producing capital potential output of consumer goods will increase. This is goods makes it possible to produce more capital illustrated in Figure 1-3. The original production possibilities goods with the available resources. The production curve is again indicated as AB. But this time the maximum possibilities curve swivels outwards from AB to AC. potential output of consumer goods increases (from A to D), while the maximum potential output of capital goods remains unchanged (at B). Again, the production possibilities curve swivels, but this time on point B rather than on point A. Except at point B, it is now possible to produce more consumer goods and capital goods than before, as illustrated, for example, by the movement from point X to point Y.

t *GUIFBNPVOUPGBWBJMBCMFSFTPVSDFT FHUIFOVNCFSPGXPSLFST BOEPSUIFQSPEVDUJWJUZPGUIFBWBJMBCMFSFTPVSDFT increase, it will be possible to produce more consumer goods and more capital goods than before. This can be illustrated by a shift of the original production possibilities curve (AB) to the right (to EF) as in Figure 1-4. Figures 1-2, 1-3 and 1-4 all illustrate economic growth. The amount of resources or their productivity (or efficiency) can, of course, also decrease, resulting in a decline in potential output. This can be illustrated by inward shifts of the production possibilities curve (ie a reversal of the shifts illustrated in Figures 1-2, 1-3 and 1-4).

CH A P T ER 1 W H A T E C ONOM ICS IS ALL ABOUT

9

FIGURE 1-3 Improved technique for producing consumer goods

FIGURE 1-4 Increase in the quantity or productivity of the available resources E Consumer goods

Consumer goods

D

A Y X

A

B 0

Capital goods

An improved technique for producing consumer goods makes it possible to produce more consumer goods with the available resources. The production possibilities curve swivels outwards from BA to BD.

B 0

F

Capital goods

An increase in the quantity or productivity of resources makes it possible to produce more consumer goods and capital goods. The production possibilities curve shifts outwards from AB to EF.

The production possibilities curve also illustrates how important it is to use scarce resources fully and efficiently. If the economy is operating at less than the potential output (ie if actual output is less than potential output), illustrated by a point inside or below the production possibilities curve, some of the available resources are unemployed or not employed efficiently – see point H in Figure 1-1. In such a case it is possible to expand production simply by using the existing resources fully and more efficiently (given the state of technology). With a fuller or more efficient use of the available resources actual output can be increased from H to C or D in Figure 1-1. See also Table 1-2. The production possibilities curve illustrates potential output TABLE 1-2 The production possibilities curve but it does not indicate which of the possible combinations (PPC): a summary should be produced. The final choice will depend on the Description Illustrated by preferences of society. For example, from an efficiency point of view it is possible to produce various combinations of Attainable combinations All points on or inside the military goods and civilian goods, but the actual combination PPC chosen will depend on the preferences of consumers, or of Unattainable All points beyond the PPC political office-bearers as their representatives. combinations The example of the choice between the production of ,MÄJPLU[JVTIPUH[PVUZ All points on the PPC consumer goods and capital goods can be used to indicate a 0ULMÄJPLU[JVTIPUH[PVUZ All points inside the PPC further important aspect of economic growth. By this time you (or unemployment) are aware that an increased availability of resources (factors Increase in potential Outward shift of the PPC of production) will raise the potential output of the economy. output But you also know that capital goods are manufactured factors of production. Thus, the greater the amount of capital goods produced, the greater the potential output will be. The choice between the production of consumer goods and capital goods is therefore not a neutral one as far as the potential growth rate of the economy is concerned. The greater the amount of resources that are devoted to the production of capital goods (machinery, equipment, etc), the fewer the amount of resources available to produce consumer goods that can be enjoyed by the population. But, and this is important, the greater the current production of capital goods, the greater the potential output of the economy and therefore also the greater the potential future production of consumer goods. If, on the other hand, most resources are currently used to produce consumer goods, the capital stock of the economy will not expand rapidly and the potential output of the economy and the potential future production (and enjoyment) of consumer goods will suffer.

10

C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

The decision about what to produce incorporates the decision about how much of each good and service to produce, as well as the decision about what not to produce. The decision about what to produce is therefore really a decision about how to allocate the scarce resources among different possible uses. That is why the decision about what to produce is called the problem of resource allocation.

1.5 Economics is a social science Economics is a science. Like any other science, economics involves a systematic attempt to discover regular patterns of behaviour. These patterns are used to explain what is happening, to predict what might happen and to assist policymakers to devise or choose appropriate economic policies. Take the petrol price as an example. Economics assists us in explaining the level of the petrol price or why it has changed. It helps us to predict what the price will be in future or what will happen in the rest of the economy if the petrol price changes. Economics also provides useful information to the authorities who have to decide on a policy in respect of the petrol price. The emphasis on explanation, prediction and policy will be a recurrent theme of this book. Economics is a social science. It studies the behaviour of human beings, both individually and as groups. Other social sciences include sociology, social psychology, anthropology and political science. The social sciences are distinguished from the natural sciences like physics, chemistry, botany, astronomy and zoology, which study the natural universe. So the natural sciences differ from the social sciences in respect of what is studied. But there are also differences in respect of how it is studied. In many natural sciences it is possible to conduct controlled laboratory experiments. However, this method is generally not available to social scientists. Economists cannot discover regular patterns of behaviour by conducting laboratory experiments, nor can they test their theories in this way. Economists study the behaviour of people in a constantly changing environment. They cannot place people in test-tubes to determine how they will react to any particular change. They cannot hold other things constant while the impact of one particular change is investigated. Economists therefore have to resort to other methods. Another important difference between economics and a natural science like physics is found in the nature of their generalisations. In the natural sciences certain natural laws can be identified. For example, the law of gravity states that when an apple falls from a tree, it will always fall to the ground. But when the price of apples falls, the best an economist can say is that more apples will probably be purchased. This outcome is a very likely outcome and economists are so confident about it that they generally also talk about a law, the Law of Demand, which will be discussed in Chapter 4. But this law is not as absolute or exact as the laws of the natural sciences. It is a conditional law which says that the quantity demanded will increase when price falls, provided all other things remain the same. This condition, that all other factors remain constant, is called the ceteris paribus condition or assumption. Ceteris paribus (which is the Latin term for “all things being equal”) is the economist’s substitute for the natural scientist’s controlled laboratory experiments. It is not a perfect substitute but it is the best we can do in our attempt to explain the complex and often unpredictable behaviour of human beings. The ceteris paribus condition is an essential part of economic reasoning. You will encounter it at various places in this book. Economics is an empirical science. This means that actual experiences are studied and measured. But measurement is generally also far less precise in economics than in the natural sciences. Particularly in the case of macroeconomics, which involves amounts like total spending, income and production, measurement can only be approximate. Nevertheless, we have to measure things in economics. The measurement of the performance of the economy will be explained in Chapter 13.

1.6 Microeconomics and macroeconomics The study of economics is usually divided into two parts: microeconomics and macroeconomics. In microeconomics the focus is on individual parts of the economy. The prefix “micro” comes from the Greek mikros meaning small. In microeconomics the decisions or functioning of decision makers such as individual consumers, households, firms or other organisations are considered in isolation from the rest of the economy. The individual elements of the economy are, figuratively speaking, each put under the microscope and examined in detail. Examples include the study of the decisions of individual households (what to do, what to buy, etc) and of individual firms (what goods to produce, how to produce them, what prices to charge etc). It also includes the study of the demand, supply and prices of individual goods and services like petrol, maize, haircuts and medical services. Macroeconomics is concerned with the economy as a whole. The prefix “macro” comes from the Greek word makros meaning large. In macroeconomics we focus on the “big picture.” We develop an overall view of the economic system and we study total or aggregate economic behaviour. The emphasis is on topics such as total production, income and expenditure, economic growth, aggregate unemployment, the general price level, inflation and the balance of payments. Macroeconomics is therefore the world of totals. CH A P T ER 1 W H A T E C ONOM ICS IS ALL ABOUT

11

Further examples of the distinction between microeconomics and macroeconomics are provided in Box 1-3. While microeconomics studies the operation of the economy at the level where the decisions are taken by households and businesses, macroeconomics focuses on aggregate economic behaviour and the aggregate performance of the economy. The distinction between microeconomics and macroeconomics is not water tight. There are many overlaps. What happens at the individual (micro) level affects the overall (macro) performance of the economy and vice versa. Nevertheless, the distinction between microeconomics and macroeconomics is very useful in our attempt to understand, explain and predict economic events and to examine economic policy.

1.7 Positive and normative economics Another important distinction is between positive and normative economics. A positive statement is an objective statement of fact. A normative statement involves an opinion or value judgement. Consider the following examples: t ,BJ[FS$IJFGTXPOUIF14-JO t /FMTPO.BOEFMBXBTUIF4PVUI"GSJDBO/FXTNBLFSPGUIF:FBSJO t 5JHFS8PPETXPOUIF640QFOJO t *OUIFBWFSBHF4PVUI"GSJDBOJOnBUJPOSBUF CBTFEPOUIFDPOTVNFSQSJDFJOEFY XBT QFSDFOU t 5IFSBOEBQQSFDJBUFEBHBJOTUUIFFVSPJO t #BGBOB#BGBOBDBOQMBZNVDICFUUFSUIBOUIFZEJEBHBJOTU#SB[JMJO.BSDI t &DPOPNJDQPMJDZJO4PVUI"GSJDBTIPVMECFQSJNBSJMZBJNFEBUSFEVDJOHVOFNQMPZNFOU t -PVJT0PTUIVJ[FOJTBCFUUFSHPMGFSUIBO$IBSM4DIXBSU[FM t One flew over the cuckoo’s nest is one of the best movies ever made. t 5IF4PVUI"GSJDBOJOnBUJPOSBUFJTUPPIJHI The first five are positive statements. The last five are normative statements which involve opinions or value judgements. Positive statements can be proved or disproved by comparing them with the facts. Normative issues can be debated but they can never be settled by science or by an appeal to facts. Statements which include words like “should”, “ought”, “desirable” and “must” are all normative statements. But

BOX 1-3 MICROECONOMICS VERSUS MACROECONOMICS: SOME EXAMPLES

12

In microeconomics we study

In macroeconomics we study

The price of a single product

The consumer price index

Changes in the price of a product, like tomatoes

Inflation (ie the increase in the general level of prices in the country)

The production of maize

The total output of all goods and services in the economy

The decisions of individual consumers, like Simon Mokgatle or Anne van der Merwe

The combined outcome of the decisions of all consumers in the country

The decisions of individual firms or businesses, like a shop or factory

The combined decisions of all firms in South Africa

The market for individual goods, like bananas

The market for all goods and services in the eco-nomy

The demand for a product, like maize

The total demand for all goods and services in the economy

An individual’s decision whether or not to work

The total supply of labour in the economy

A firm’s decision whether or not to expand its production of, say, motorcars

Changes in the total supply of goods and services in the economy

A firm’s decision to export its product

The total exports of goods and services to other countries

A firm’s decision to import a product from abroad

The total imports of goods and services from other countries C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

not all normative statements contain these words. Consider the following two examples: tù$BQJUBMJTNFYQMPJUTXPSLFST tù1PWFSUZJTUIFEJSFDUSFTVMUPGUIFBQBSUIFJETZTUFN Both these statements might sound like positive statements but they are in fact normative statements. Both contain value judgements and neither of them can be proved or disproved objectively. This can be very frustrating. We always want definite answers to questions, but we simply have to accept that economics can never be a value-free science. Economics deals with people, their hopes, fears and ambitions. Human behaviour can never be analysed totally objectively and policy always involves judgement. Values, faith, belief, conviction, prejudice and ideology are therefore frequently decisive in economic matters. This helps to explain why economists often disagree on certain important issues. See Box 1-4.

BOX 1-4 WHY ECONOMISTS DISAGREE Economists are notorious for their tendency to differ on important issues. This prompted George Bernard Shaw to state that if all the economists in the world were laid end to end, they would reach no conclusion. Likewise, Arthur Motley claimed that if the nation’s economists were laid end to end, they would point in all directions! Roberto Alazar also once said that economics is the only field in which two people can share a Nobel prize for saying opposing things! Winston Churchill is reported to have stated, when he was the British Chancellor of the Exchequer, that whenever he asked England’s six leading economists a question, he got seven answers – two from Mr Keynes! The fact that Keynes reputedly submitted two answers is also not surprising. Economists are often unwilling to commit themselves to a single answer. Ask an economist a question and you will usually receive more than one answer: “On the one hand … but on the other hand…”. That is why it is often jokingly said that one-handed economists are in great demand! Why do economists tend to disagree on certain important issues? tThey might make different value judgements. Many economic issues involve value judgements. Economics deals with people, their hopes, fears, beliefs and ambitions. Human behaviour can never be analysed totally objectively. Values, faith, belief, conviction, prejudice and ideology are frequently decisive in economic matters. Thus even when economists agree on the facts, they may differ because they have different views about what ought to be. tThey might not agree on the facts. Measurement in economics is often only approximate. Moreover, it takes time to compile data on the performance of the economy. There is therefore always some uncertainty about the actual performance of the economy at any particular time. tThey might be biased. Economists are human beings and like all other human beings they might find it difficult to be completely objective. They might be forced to reach conclusions that serve the interests of their employers. For example, an economist who is employed by government will find it difficult to be critical of government policy. Likewise, economists who are employed by private companies could face dismissal or could sacrifice promotion if they make public statements about economic issues that are not in their employers’ interests. tThey might hold different views about how the economy operates. Many economic issues are complex, particularly at the macroeconomic level. Even if economists are in a position to be objective, they might still hold different views about how the various parts of the economy fit together or about the speed with which certain parts react to changing circ*mstances. tThey might have different time perspectives. Some economists may be more concerned with shortterm prospects while others might tend to focus on the long run. This might lead to different conclusions.

CH A P T ER 1 W H A T E C ONOM ICS IS ALL ABOUT

13

There is a well-known story about a person who visited her economics professor thirty years after she had left university. Seeing an examination paper on the professor’s desk, she commented that the questions were still the same as thirty years before. “Quite true,” came the reply, “but the answers are different!” Although this might be somewhat far-fetched, it is not completely ridiculous. As circ*mstances change, new explanations are often needed. Economists are therefore often forced to change their minds about important issues. Those who do will then differ from those who stick to their previously held views. We have already referred to John Maynard Keynes, a famous 20th century British economist. He often changed his mind on important policy issues when circ*mstances or the nature of problems changed. This made him unpopular in certain circles. He reacted as follows: “I seem to see the elder parrots sitting around and saying ‘You can rely upon us. Every day for 30 years, regardless of the weather, we have said “What a lovely morning!”. But this [Keynes] is a bad bird. He says one thing one day and something else the next’.”1 In a similar vein he once told a critic: “If the facts change, I change my mind. What do you do, sir?” Nevertheless, economists agree on many issues. This agreement is particularly obvious when economists talk to non-economists. Any experienced economist will be able to provide many examples of how economists of different persuasions will tend to agree with one another when discussing economic issues with politicians, business people, lawyers, accountants, engineers, mathematicians and other noneconomists. The reason is that the economists have all been trained in the economic way of thinking, while the other people have not. 1 Quoted by Lord Kaldor in Thirlwall, AP (ed). 1982. Keynes as a policy adviser. London: Macmillan, 17.

1.8 A few points to note The economic way of thinking Many people think that economics is a difficult subject. The main reason for this opinion is that economics has a language of its own. People who do not understand the terms that economists use tend to believe that economics is difficult. Other people maintain that economics is easy, since much of it is simply common sense. As indicated at the beginning of this chapter, economics deals with a number of very ordinary issues. Much of it is indeed common sense. But it is structured common sense. It is a way of thinking about everyday issues. As John Maynard Keynes once put it: The theory of economics does not furnish a body of settled conclusions immediately applicable to policy. It is a method rather than a doctrine, an apparatus of the mind, a technique of thinking which helps its possessor to draw correct conclusions.1 Unfortunately the economic way of thinking does not come easily to people who have not been trained in or exposed to economics. In the remainder of this section we indicate some of the common mistakes non-economists make when reasoning about economic issues. Even economists fall into one or more of these traps from time to time.

The blinkered approach (or biased thinking) Any particular individual looks at the world from his or her own vantage point. In other words, we all look at reality through different eyes. Those who are not trained to recognise the various interrelationships in the economy tend to make highly simplified and biased diagnoses of economic issues. They also often propose very simple solutions to the country’s economic problems. In the late 1970s a lecturer in engineering at the University of Stellenbosch wrote a letter to Die Burger in which he diagnosed South Africa’s economic problems and offered easy solutions. According to him there were only two major causes of the problems: engineers were being paid too little compared with other workers and personal income tax rates were too high. The solutions were therefore simple – pay engineers more and reduce personal income tax. This is a typical example of blinkered reasoning. Here we had a tax-paying engineer looking at the economy from his particular vantage point and proposing a solution that suited him personally. This tendency to produce oversimplified and biased diagnoses and policy prescriptions is not restricted to the engineering fraternity. Most non-economists tend to come up with simple explanations and proposals based on their own particular experience or interests. In other words, there is a tendency to provide the One Big Explanation. 1. Keynes, JM. 1923. Introduction. In Robertson, DH, The control of industry. New York: Macmillan, vii.

14

C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

Some politicians, for example, argue that most of South Africa’s economic problems can be traced to the policy of apartheid. Others again argue that South Africa’s economic problems started when the apartheid system came under pressure, pointing out that there was rapid growth and economic stability during the heyday of apartheid. Workers tend to blame big business for our economic woes, while some businessmen regard trade union pressure for higher wages as the major cause of South Africa’s poor economic performance. The list is almost endless. Ask anyone to explain an economic problem like inflation or unemployment and you will usually get a simple explanation and a simple solution which can be traced to that person’s personal circ*mstances. Few people are trained to step outside their own circ*mstances when looking at economic problems and even fewer are honest enough to admit that they might be part of the problem. In fact, even economists find it difficult (if not impossible) to be completely objective in their analyses of real-world economic problems.

Fallacy of composition2 A second, related mistake often made in reasoning about economic issues is to assume that the whole is always equal to the sum of the parts. This is called the fallacy of composition. Something that is true for the single case (or a part of the object being studied) is not necessarily true for the whole. Have you ever seen a spectator seated in the stands at a soccer match suddenly stand up to get a better view of the action? If one person does it, he or she might see better. But if all the spectators stand up at the same time, nobody will see any better than they would have if everybody had remained seated in the first place. In fact, the short ones will probably have a worse view. Likewise, one person can withdraw money from a bank without causing any problems. But if most of the bank’s clients withdraw their deposits, the bank could collapse. Similarly, one worker or group of workers could benefit by obtaining a wage increase. But if the wages of all workers in the economy are increased, the result could simply be inflation. This would leave no one better off than before. In fact, they could perhaps even be worse off. Another example is the paradox of thrift. One household could benefit by saving more, but if all households save more, everyone may end up in a worse position than before. If saving increases, spending decreases. With lower levels of spending there will be lower levels of production and income. Ultimately, all households may therefore end up with less income to save than before. The fallacy of composition often occurs in reasoning about macroeconomic issues because people tend to generalise from their own experience as individuals when trying to explain the operation of the economy as a whole.

Post hoc ergo propter hoc Post hoc ergo propter hoc is a Latin phrase meaning “after this, therefore because of this”. When two events follow each other closely in time, people often assume that the second event is the consequence of the first. In other words, the first event is regarded as the cause of the second event. This is called the post hoc ergo propter hoc fallacy or post hoc fallacy for short. For example, in a South American village there was a witchdoctor who put on a green costume each year just before the rainy season and then danced through the village. A few weeks later the trees and the grass turned green. Was this because of the witchdoctor’s dance? Obviously not. Likewise, the fact that the rooster crows before dawn does not mean that the rooster is responsible for the sunrise. A certain group of economists – the monetarists – attribute inflation to earlier increases in the money stock. They justify their position by pointing to observations about increases in the money stock and subsequent increases in prices. Two British researchers, Llewellyn and Witcomb, found, however, that there was a stronger correlation between the incidence of dysentery (a stomach infection) in Scotland and the inflation rate in the United Kingdom one year later than between increases in the money stock and the subsequent price increases. Using the monetarists’ line of argument it could therefore be concluded that Scottish dysentery (and not increases in the money stock) was the real cause of inflation in the United Kingdom! We are often tempted to say: “Look what happened after that event occurred last time!” But the trouble is that there are so many things at work all the time. Therefore, unless you know more about a situation apart from the fact that one thing followed the other, you really cannot conclude anything. Always be extremely careful not to fall into the post hoc ergo propter hoc trap. Correlation and causation

The post hoc fallacy is a specific example of the more general confusion between correlation and causation. If two events occur together or tend to follow one another, it does not necessarily follow that the one is the cause of the other. In other words, correlation does not imply causation.

2. Note that when an argument is branded as a fallacy or error of logic, it does not imply that the argument is necessarily incorrect – it merely means that it is not necessarily correct. CH A P T ER 1 W H A T E C ONOM ICS IS ALL ABOUT

15

It is sometimes stated, for example, that bowls is the most dangerous sport in the world since more people die on bowling greens than on any other sports fields. This is of course a nonsensical argument. Bowls is a very safe sport. It is quite true that many people die on bowling greens. But this is simply because so many elderly people play bowls. Likewise, it can be claimed that diet cool drinks make one put on weight. Why? Because most people who drink these beverages are overweight. This is again a fallacy. Many people drink sugar-free or diet drinks in an attempt to lose weight. The following is a famous example. It has been established that there is a positive correlation between the number of babies born in various cities in northwestern Europe and the number of storks’ nests in those cities. Does this mean that storks really do bring babies? No, cities with larger populations (and more babies) tend to have more houses, which offer storks more chimneys on which to build their nests. There is also a positive correlation between shoe sizes and the mathematical ability of school children. What does this mean? It only means that older children, with bigger feet, can do more mathematics than younger, smaller children with smaller feet. This example shows how one can go wrong by focusing on one thing (shoe size) while ignoring other more important things (like age). A statistical correlation between two variables does not prove that one has caused the other or that the variables have anything to do with each other. For causation to be established there must be a logical theory explaining the effect of one variable on the other.

Levels and rates of change Many people mistakenly believe that economics is only about numbers. Economics is an empirical science and economists often use numbers. But they use them only to illustrate principles or to quantify or analyse those things that can be expressed in numbers. When dealing with numbers you must be very careful. One of the most common mistakes is to confuse levels with rates of change. The following examples illustrate the importance of distinguishing between levels and rates of change. tù8FPGUFOSFBEPSIFBSUIBUiUIFMBUFTUDPOTVNFSQSJDFJOEFYJTQFSDFOUw"TXFTIBMMFYQMBJOJO$IBQUFSTBOE 20, the consumer price index measures the level of prices in the country. We then calculate the rate of change of that level to determine the inflation rate. The statement should therefore read: “the latest rate of increase in consumer prices is 10 per cent” or “the latest inflation rate is 10 per cent.” This example illustrates the fact that people often confuse the level of prices with the rate of increase in prices. In other words, people tend to confuse high prices with rapidly increasing prices. Moreover, when they hear that the inflation rate has declined, they often mistakenly think that it means that prices have fallen when, in fact, prices are still increasing, but at a slower rate than before. tù5IFBWFSBHFMFWFMPGXBHFTPGCMBDLXPSLFSTJO4PVUI"GSJDBJTTUJMMTJHOJmDBOUMZMPXFSUIBOUIFBWFSBHFXBHFT of white workers. But during the past four decades wages of black workers have on average increased much faster than white workers’ wages. It is thus possible for a variable (such as the wages of black workers) to be at a relatively low level even after increasing at a high rate. The base from which a rate is calculated should always be taken into account. See Box 1-5. t *OEVTUSJBMJTFE DPVOUSJFT TVDI BT UIF 6OJUFE 4UBUFT +BQBO 4XJU[FSMBOE BOE (FSNBOZ IBWF IJHIFS MFWFMT PG income per person than developing countries such as Korea, China and India. But incomes in the latter countries grew much faster than in the former in recent decades. China had very high growth rates during the 1990s and 2000s. But China is still not a rich country. Why? Because the growth in China started from a very low base. The Chinese economy has grown rapidly, but the level of production and income per person in China is still low compared to the richer countries of the world. As we proceed we shall provide more examples of the need to distinguish carefully between levels and rates of change. There are many other examples of mistaken reasoning. Most of them are not confined to economics. They are mistakes that people often make in reasoning about a wide variety of issues. But they are mistakes and we always have to be careful of falling into one or more of these traps. Economics, like any other science, calls for disciplined, structured and logically correct reasoning.

BOX 1-5 PERCENTAGES AND PERCENTAGE CHANGES In dealing with the economy you will often encounter percentages. Calculating percentages is quite simple but many people struggle to do it, or get confused with percentage shares, percentage changes and so on. The following are the basic rules:

16

C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

A. Expressing one number as a percentage of another (or calculating percentage shares)

Rule x as % of y Step 1: Divide x by y Step 2: Multiply by 100

Example 60 as % of 150 60 ÷ 150 = 0,4 0,4 × 100 = 40

Answer: 60 is 40% of 150 B. Calculate a percentage change between two figures

Rule Change between x and y as % of x Step 1: Divide y by x Step 2: Subtract 1 Step 3: Multiply by 100 OR Step 1: Subtract x from y Step 2: Divide by x Step 3: Multiply by 100 Answer: 120 is 50% more than 80

Example Change between 80 and 120 as % of 80 120 ÷ 80 = 1,5 1,5 – 1 = 0,5 0,5 × 100 = 50 120 – 80 = 40 40 ÷ 80 = 0,5 0,5 × 100 = 50

C. Calculate a given percentage of an amount

Rule x% of y Step 1: Divide x by 100 Step 2: Multiply by y Answer: 40% of 160 is 64

Example 40% of 160 40 ÷ 100 = 0,4 0,4 × 160 = 64

D. Find an amount after a given percentage increase or decrease

Rule Example x increased by y% 150 increased by 20% Step 1: Divide y by 100 20 ÷ 100 = 0,2 Step 2: Add 1 0,2 + 1 = 1,2 Step 3: Multiply by x 1,2 × 150 = 180 Answer: If 150 increases by 20% we get 180 Three further points: t%POPUDPOGVTFQFSDFOUBHFQPJOUTXJUIQFSDFOUBHFDIBOHFT*GBSBUF FHBOJOUFSFTUSBUFPSJOnBUJPOSBUF increases from 10% to 11%, it has risen by one unit or one percentage point. The percentage increase is 10% (1/10 × 100, or (11/10 – 1) × 100). t"MXBZTOPUFUIFEJSFDUJPOPGDIBOHF'PSFYBNQMF JGUIFDIBOHFJTCZGSPNUP JUJTBOJODSFBTF of 50%; but if the change is from 150 to 100, the decrease is 33,3% (because the base is different). By the same token, a 50% increase followed by a 50% decrease will leave you 25% worse off. Can you do the calculation to prove it? t"MBSHFQFSDFOUBHFPGBMPXOVNCFSJTTUJMMBMPXOVNCFS0OUIFPUIFSIBOE BTNBMMQFSDFOUBHFPGBMBSHF number may be quite large. For example, 50% of 300 is equal to 1% of 15 000: 50 300 1 5 000 × = = 1 50 1 00 1 1 00 1 5 000 1 5 000 1 1 % of 1 5 000 = × = = 1 50 1 00 1 1 00 50% of 300 =

Thus, if John earns R300 per month while Harry earns R15 000 per month, a 50% increase in John’s monthly earnings will be required to match a 1% increase in Harry’s monthly earnings. Likewise, 20% of 100 is less than 5% of 500. It is therefore extremely important to distinguish carefully between levels and percentages or rates.

CH A P T ER 1 W H A T E C ONOM ICS IS ALL ABOUT

17

AP P E N D IX 1-1 BAS I C TO O LS O F ECO N O M I C ANALYS I S

Economics is not particularly difficult. On the contrary, much of the economic theory in this book is simply common sense. But it is structured common sense. To arrive at the correct conclusions you must “think straight”, that is, you must argue in a logical, disciplined fashion. The problem with economics is that many of the issues are familiar to everyone. Economics is so mixed up with everyday life that people often think they can answer important questions without analysing them carefully or systematically. Without realising it, people often accumulate and absorb opinions, ideas, hearsay and half-truths which make “straight” thinking difficult. In this appendix we introduce a number of concepts and tools that you will need for straight thinking in economics. Many of them should be quite familiar to you. Although very basic, they are essential ingredients of disciplined, clear thinking.

A.1 Theory and reality Theory is not a popular word. Most people are not interested in theory. They want to deal with the real world, not with some theory about how the world is supposed to function. Students often complain that economics is too abstract or unrealistic. People often say: “That is all very well in theory, but it does not work that way in practice.” Everyone wants to deal with reality. But eco-nomic reality is very complex. Economists study human behaviour in a world in which virtually everything is related to everything else, and often in more than one way. To deal with this complex reality we have to simplify. We have to scale things down to manageable proportions by focusing on the essential elements only. This is what theory is all about. Theory thus involves simplification or abstraction. No theory (in any science) captures every detail of the phenomenon being studied. A theory captures only details which are regarded as essential or crucial for analysing a particular problem. All theories are simplifications of reality. The aim is to make sense of an extremely complicated world by focusing on the most important factors, while allowing all the unimportant details to fade into the background. Theorising is a systematic attempt to understand the world around us. It is thus a way of organising our thinking. Logical, structured, organised or clear thinking always involves simplification. Reality is just too complicated to allow us to think clearly about everything at once. A theory is like a map. A map is a simplified version of reality – it is an abstraction which focuses on the essential information that the user needs in order to locate a certain place or address. The main requirement (or secret) of good analysis or theorising is to identify the most important elements and relationships in the complex world that we need to explain, and to ignore the rest. This way we will not be confused by irrelevant detail. Theories are sometimes also called models, laws, principles, explanations or hypotheses. Theories, models, laws and hypotheses all refer to ideas or stories about how the world works. Economic theory has three main purposes: t5Pexplain (or understand) how different things are related in the complex real economic world t5Ppredict what will happen if something changes t5Pser ve as a basis for the formulation and analysis of decisions on economic policy

A.2 Different ways of expressing a theory Economic theory is an attempt to explain and analyse economic behaviour by isolating certain important relationships, patterns or regularities. Economic theory can be expressed in words, numbers, symbols and equations, or graphs. We use a simple example to illustrate this point. Any theory or relationship can be expressed in words (ie verbally). For example, we can say that there is a relationship between the total spending by households on consumer goods and services and their income – as households’ income increases, their spending also increases. The same relationship can also be expressed in numbers by using a numerical table, which is called a schedule. For example, Table A-1 contains hypothetical figures about a positive relationship between total household income and total spending on consumer goods and services by households. A third, very useful way of expressing a theory or relationship is to use symbols and equations. This has three major advantages. Using symbols is an efficient or shorthand way of expressing a relationship. For example, we can use the symbols C for household spending on consumer goods and services and Y for total household 18

C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

income and write that C = f(Y). This simply means that C (ie household spending) is a function of (or depends on) Y (household income). The second important advantage of expressing theories or relationships as equations is that we can then use the rules of algebra (ie mathematics) to analyse the relationships. Those of you who have a mathematical background will immediately realise the advantage of expressing relationships such as the one in our example as C = 15 000 + 0,75Y

TABLE A-1 Total household income and total household spending on consumer goods and services Total household income (R millions)

Total household spending on consumer goods and services (R millions)

́ ̈́

́̈́

̈́

́ ̈́

̈́

̈́

In this equation, each symbol has a specific meaning. ̈́ ̈́ Expressing the relationship in this way should make it obvious ̈́ ̈́ that there is a positive relationship between C and Y. ̈́ ̈́ The third major advantage of using equations is that a large ̈́ ̈́ number of variables can be analysed using the algebraic method. When there are only two variables involved it is still relatively easy to express the relationship in words and to derive certain conclusions from the basic relationship. But as soon as we allow for more variables and for the interaction between different sets of variables, matters become complicated and it is often very difficult (in fact almost impossible) to keep track of everything using words only. The major drawback, however, is that many students do not have a basic background in mathematics. For that reason, we use virtually no mathematics in this book. We do use symbols as a form of shorthand, but as far as the manipulation of equations is concerned, we never go beyond simple addition, subtraction, multiplication and division. We also always present the alternative formulations of the theory concerned (ie in words, numbers or graphs). The fourth possible way of presenting relationships or theories is by making use of graphs. This method is used extensively in economic analysis. It is an extremely useful method since it gives a visual indication of the major elements or relationships in any theory. As the Chinese proverb states, one picture is worth a thousand words. To be successful in the study of economics, you must be able to read or interpret graphs and to draw them. The basic rules are very simple, but because they are so important we devote a special section of this appendix to the meaning, interpretation and use of graphs.

A.3 Equilibrium and ceteris paribus In their attempts to identify and analyse the important relationships between variables in the economy, economists have to use a certain method or approach. Here they are at a disadvantage compared to most natural scientists (eg physicists or chemists) who can use controlled experiments and other laboratory methods to establish and analyse cause-effect relationships. For example, if a chemist wants to discover the reaction of chemical A with chemical B, he or she can take two identical and sterile test-tubes with the same amount of B in both and then add a certain amount of A to one of the test-tubes. The result in this tube is then compared to the unchanged tube and the difference can be ascribed to the reaction between A and B. If this experiment is repeated under the same conditions, the same result will be obtained. The chemist can also use the same method to determine the effects of varying the proportions of A and B. This experimental method is generally not available to economists or other social scientists. The economist deals with the complex real world in which many things are changing all the time and in which outcomes depend on human decisions and reactions. The economist thus has to employ other methods to understand, explain and predict economic phenomena. Two essential elements of the economist’s toolkit are the concept of equilibrium and the ceteris paribus assumption. These concepts may sound quite daunting but they are actually not so complicated. Equilibrium The concept of equilibrium plays a central role in economic theory. It refers to a situation in which none of the participants has any incentive to change his or her behaviour – everyone is content to continue with things as they are. Equilibrium can also be described as a state of balance, that is, a state in which all opposing forces are balanced. A system is in equilibrium when the different forces offset each other so that there is no net tendency for the system to change. In economic theory we examine all the forces at work in the particular situation that we are investigating and then formulate the conditions under which there will be equilibrium (ie a condition of balance in which all plans are realised or all opposing forces offset each other). CH A P T ER 1 W H A T E C ONOM ICS IS ALL ABOUT

19

As a next step, one of the underlying forces is then changed and a new equilibrium is described. We compare the new equilibrium with the original one and ascribe the difference to the change in the underlying force. Ceteris paribus It is all very well to construct a picture in which all forces are balanced or at rest and then change one element only and determine the results of such a change. But how can we be sure that none of the other elements or forces will change? Economists deal with this problem by assuming that all the other factors or forces remain constant or unchanged. This is the ceteris paribus assumption. Ceteris paribus is a Latin term which means “other things being equal”. You will encounter this assumption from time to time in the rest of this book and in your future studies in economics. The ceteris paribus assumption may seem very implausible but it is in fact an absolutely essential (and probably the most useful) assumption in economic analysis. In the real world, of course, most things are changing all the time. In other words, the real world is never in equilibrium. But, as we stressed earlier, theory is not a description of actual events. It is an attempt to understand how the real world works, and to reach such an understanding we have to use “unrealistic” concepts and methods such as equilibrium and ceteris paribus. These concepts and methods will become clearer once we start using them. Do not be concerned if you do not fully understand them at this stage.

A.4 Reading and working with graphs If you page through this book, or through any other economics textbook, you will come across a large number of graphs (or diagrams or figures). The aim of these graphs is to help you understand and visualise the operation of an economy and its parts. We have already referred to the Chinese proverb that one picture is worth a thousand words. This saying is, however, true only if you are able to “read” (ie understand or interpret) the picture (or diagram). As a student of economics, you must also be able to draw a diagram or graph as you will often be asked to explain concepts or theories “with the aid of a diagram”. The purpose of this section is to help you “read” and construct diagrams or graphs. Graphs are used to tJMMVTUSBUFFDPOPNJDGBDUTBOEmHVSFT tQSFTFOUBOFDPOPNJDUIFPSZ PSNPEFM WJTVBMMZ In this book the emphasis is on the use of graphs in the visual representation of economic theory. To understand these graphs, you have to know how graphs are constructed. If you do not have a mathematical background, do not despair. The graphs in this book are all simple and easy to understand. All you need in order to understand graphs and work with them, is some discip-line, common sense and plenty of practice. The axes A graph is drawn in a two-dimensional space, called a coordinate space. The basic elements are two lines, one horizontal and the other vertical, labelled x and y respectively in Figure A-1. The horizontal line is called the horizontal axis (or x axis) and the vertical line is called the vertical axis (or y axis). The two axes cross (or intersect) at zero (which is called the origin). The horizontal axis (x axis) starts on the left-hand side at minus infinity and the values measured on the axis then increase (the negative values become smaller) up to zero. To the right of the origin the values become positive and increase as we move to the right. The vertical axis (y axis) is measured from the bottom to the top, the numbers increasing from minus (or negative) infinity at the bottom to plus (or positive) infinity at the top. Infinity is denoted by the symbol `. The axes in Figure A-1 divide the figure into four squares known as quadrants. Combinations of x and y, where the values of both are positive, are shown in the first quadrant. Combinations of x and y, where the values of both are negative, are shown in the third quadrant. In the second quadrant the values for y are positive and those for x negative, and in the fourth quadrant the values for y are negative and those for x positive. Because most economic data and variables are positive, economists usually work only with the first quadrant. The graphs used in this book are practically all first quadrant graphs. A graph like the one in Figure A-1 can be drawn on graph paper, where equal distances on the horizontal and vertical axes represent the same magnitudes, that is, each little square on the graph paper is equal to one unit (or any multiple or fraction of one) on both the horizontal and vertical axes. The scale of a graph, however, does not have to be drawn like this. The horizontal and vertical axes often represent different things and therefore have different scales. 20

C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

FIGURE A-1 The basic elements of a graph y

m 13

Vertical axis

2nd quadrant

1st quadrant

x is negative and y is positive

x is positive and y is positive

3 2 1 0

-•

-3 –2 -2 –1 -1 –3 -1 –1 3rd quadrant x is negative and y is negative

-2 –2 -3 –3

Horizontal axis

Origin

1

2

3

x

4th quadrant x is positive and y is negative

-•

Annual maize production (millions of tons)

FIGURE A-2 Plotting points on a graph

12 11 10 9 8 7

5

A

4 3 2 1 0

The horizontal (x) axis and the vertical (y) axis cross (or intersect) at zero (the origin). On the horizontal axis, negative numbers are to the left of zero, positive numbers are to the right. On the vertical axis, positive numbers are above zero, negative numbers are below. The two axes divide the area, which is called a coordinate space, into four quadrants.

B

6

100

200

300

400

500

r 600

Annual rainfall (millimetres)

Maize production (m) is plotted on the vertical axis and rainfall (r) on the horizontal axis. On each axis there is a different, but consistent scale. Each point plotted represents a specific combination of rainfall and maize production. Point A indicates a combination of 200 millimetres of rainfall and 5 million tons of maize, while point B indicates a combination of 300 millimetres of rainfall and 7 million tons of maize.

The important point to note is that once a scale has been decided on, that scale must be applied to the whole axis. See Figure A-2, where the distance between every 100 millimetres of rainfall on the horizontal axis is the same, and the distance between every 1 million tons of maize on the vertical axis is the same, but the two axes do not have the same scale. Drawing a graph from a table Now that we have explained the axes, we can proceed to the actual drawing of a graph that illustrates a functional relationship between two variables. We use an example of the relationship between maize production and rainfall. We assume the following possible combinations of rainfall and maize production: Maize production (m) depends on rainfall (r). In symbols this function can be expressed as m = f(r) ceteris paribus, where m = annual maize production (in millions of tons) and r = annual rainfall (in millimetres). From the information provided it is clear that there is a direct (or positive) relationship between rainfall and maize production. As rainfall increases, maize production also increases, and as rainfall decreases, maize production also decreases. To plot this information, we use only the first (or positive) quadrant, where the values of both variables are positive – neither rainfall nor maize production can be negative. We plot maize production on the vertical axis and rainfall on the horizontal axis. In Figure A-2 we do not use the same scale on both axes, that is, the divisions on the two axes are not the same. We do this because the numbers of the two variables differ quite considerably – on the horizontal axis the numbers go up to 600 (millimetres), while the numbers on the vertical axis go up to 13 (million tons) only. Note, however, that equal distances or segments on each axis must reflect equal quantities. On the horizontal axis, the distance between 300 and 400 must be the same as the distance between 400 and 500. Similarly, on the vertical axis the distance between 7 and 9 must be the same as the distance between 9 and 11. The next step is to plot the data. We illustrate this by using two of the combinations in the table. The first, which we call combination A, is the combination of 200 millimetres of rainfall and 5 million tons of maize. To plot this combination, we first go to 200 millimetres on the horizontal axis and draw a vertical line at that point. At each point along that line, rainfall r is equal to 200 millimetres. Similarly, we draw a horizontal line at a level of maize production of 5 million tons. At each point along this line, maize production m is equal to 5 million tons. At the point where these two lines intersect (and at that point only), rainfall is 200 millimetres and maize production is 5 million tons. This point, indicated by A in Figure A-2, thus represents a combination of 200 millimetres of rainfall and 5 million tons of maize. We repeat this procedure for a combination of 300 millimetres of rainfall and 7 million tons of maize and label this point B. We have now used two of the combinations given, and we have found two points, A and B, in the first quadrant. CH A P T ER 1 W H A T E C ONOM ICS IS ALL ABOUT

21

Having explained how different points are plotted, we can TABLE A-2 Annual rainfall and maize production now proceed to the actual drawing of a line or curve. In Figure A-3 we use all the information provided in the table to plot five Rainfall Maize production (millimetres per year) (millions of tons per year) combinations of rainfall and maize production. We then join these points to form a line or curve. In this particular example 200 ́ the points were specifically selected to represent a straight line. 300 ́ Such a straight line is called a linear relationship. Most of the 400 ́ functional relationships in the rest of this book are assumed to be linear, but we sometimes also use non-linear relationships. Note 11 that the line between the different points has been extended to 600 13 intersect the vertical axis at a level of maize production of 1 million tons. This point where the line meets or intersects the vertical axis is called the intercept and will be referred to again later. In any figure, the origin, the axes and the lines, cur ves or functions must be labelled clearly, other wise no-one will be able to read or interpret the picture. Relationships between economic variables Figure A-3 illustrates a direct (or positive) linear relationship between two variables. There are many such relationships in economics. There are, however, also many inverse (or negative) relationships between economic variables. Some of the possible relationships between economic variables are summarised in Figure A-4. Figure A-4(a) shows a direct (positive) linear relationship (AA) between y and x. An example of such a relationship in microeconomics could be the relationship between the quantity of a product supplied and the price of the product. FIGURE A-3 A graphical presentation of the relationship between maize production and rainfall

FIGURE A-4 Some possible relationships in economics (a)

(b)

y

y A

Annual maize production (millions of tons)

m

B

e

13 12 11

d

A

10 c

9

B x

8 7

y

b

6

(c)

(d)

y

C

a

5

x

D

4 3 2 1 0

100

200

300

400

500

600

r

x C

D 0

x

Annual rainfall (millimetres)

Points a to e represent the information in Table A-2. These points are then joined to form a straight line which indicates the relationship between maize production and rainfall. If the line is extended, it intersects the vertical axis at a level of maize production of 1 million tons.

22

AA in (a) shows a direct (positive) linear relationship between y and x, while BB in (b) shows a direct, non-linear (or curvilinear) relationship between the two variables. CC in (c) shows an inverse (negative) linear relationship between y and x and DD in (d) shows an inverse, non-linear (or curvilinear) relationship between the two variables.

C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

Figure A-4(b) shows a direct (positive) non-linear relationship (BB) between y and x. A microeconomic example is the increasing part of a firm’s marginal cost curve. Figure A-4(c) shows an inverse (negative) linear relationship (CC) between y and x. A microeconomic example of such a curve could be the relationship between the quantity demanded of a good or service and the price of that good or service. Figure A-4(d) shows an inverse (negative) non-linear relationship (DD) between y and x. A microeconomic example is the decreasing part of the marginal product of a factor of production. Plotting a graph from an equation In Figure A-3 we drew (or plotted) a graph from information provided in a table. In Section A.2 we said that information about a functional relationship contained in a table can also be represented by an equation. Instead of using a table, we can plot a graph directly from the corresponding equation. Any straight line can be represented by the general equation y = a + bx, where y is the dependent variable, x the independent variable, a the y intercept (usually the vertical intercept) and b the slope of the line. The equation representing the relationship between maize production and rainfall in Table A-2 is given by m = 1 + 0,02r, where m = annual maize production (in millions of tons) and r, = annual rainfall (in millimetres). The intercept is 1 (million tons) and the slope is 0,02 (or 1/50). To confirm that the equation is correct, we can substitute rainfall levels from the table into the equation and calculate the corresponding levels of maize production. For example, when r, = 200, then m = 1 + 0,02 (200) = 1 + 4 = 5; when r, = 300, then m = 1 + 0,02 (300) = 1 + 6 = 7, and so on. Using the equation we thus obtain the same curve as in Figure A-3. One of the advantages of using the equation of a linear relationship between two variables is that the equation contains information about the intercept and the slope of the function. 䡲 THE INTERCEPT

The intercept of a graph or curve is the point at which it crosses (or intersects) one of the axes. The y intercept is obtained by setting the value of x equal to zero (because x = 0 along the y axis). Similarly, the x intercept is obtained by setting the value of y equal to zero (because y = 0 along the x axis). For example, with m = 1 + 0,02r we obtain the intercept on the m-axis by setting r = 0. With r = 0 the last term falls away (since 0,02(0) = 0) and we are left with m = 1. In Figure A-3 we see that this is the point where the curve intersects the m axis. What does this tell us? The fact that the m intercept is equal to one means that one million tons of maize will be produced even if there is no rainfall. Some maize may, for example, be grown under irrigation, while the natural moisture in the soil may also yield some maize. 䡲 THE SLOPE

The second important element of an equation of a linear relationship between two variables is the slope. The slope of a function, curve or graph indicates the response of one variable to changes in the other variable. In everyday language, the slope of a curve reflects the relative steepness or flatness of the curve. The slope of a linear function is defined as the ratio between the change in the variable on the vertical (y) axis and the corresponding change in the value of the variable on the horizontal (x) axis. Thus: change in y values (ie on vertical axis) Slope = –––––––––––––––––––––––––––––––––– change in corresponding x values (ie on horizontal axis) Alternatively it can also be expressed as: vertical difference ––––––––––––––––––– horizontal difference In our example of maize production and rainfall, we can use the difference between any two points to obtain the slope of the curve. Consider points a and b in Figure A-3. As we move from a to b, annual rainfall increases from 200 to 300 millimetres and annual maize production increases from 5 to 7 million tons. Applying the definition of a slope we obtain the following: difference in values on vertical axis slope = –––––––––––––––––––––––––––––––––– difference in values on horizontal axis change in maize production 7–5 2 1 = = = = 0, 02 change in rainfall 300 − 200 100 50

The same result could have been obtained by using points A and B in Figure A-2. In Figure A-2 the difference in m CH A P T ER 1 W H A T E C ONOM ICS IS ALL ABOUT

23

(which we indicate by ⌬m) is 2 and the difference in r (which we indicate by ⌬r) is 100. (The symbol ⌬ is the Greek capital letter delta, which is often used to indicate a change in a variable or a difference between two values.) Thus: slope

m 2 1 0,02 (as before) r 100 50

Note also that 0,02 occurs in the equation of the function. This is no accident. The linear function m = 1 + 0,02r indicates both the intercept (1) and the slope (0,02) of the curve. Linear functions are represented by the general equation y = a + bx where a = intercept on the y axis (ie when x = 0) and b = slope (ie the number of units by which y will change if x changes by one unit) All that is required to plot a linear function is information about the intercept and the slope of the function, and both these pieces of information are contained in the equation of the function.

Concluding remarks In this appendix we introduced various essential items in the economist’s toolkit. In later chapters we shall use these tools to analyse the economy. In the process of doing this, the meaning and significance of the concepts introduced here should become even clearer.

IMPORTANT CONCEPTS Wants and needs Means or resources Scarcity (unlimited wants and limited resources) Choice Opportunity cost (or trade-off) Production possibilities curve Potential output Economic growth Consumer goods Capital goods Non-durable goods Semi-durable goods Durable goods Services Final goods

24

Intermediate goods Private goods Public goods Economic goods Free goods hom*ogeneous goods Heterogeneous goods Resource allocation Social science (versus natural science) Explanation Prediction Policy Ceteris paribus Microeconomics Macroeconomics Positive economics

Normative economics Biased thinking Fallacy of composition Post hoc ergo propter hoc Correlation and causation Levels versus rates of change Theory Simplification Schedule Graph Equilibrium Direct (positive) relationship Inverse (negative) relationship Intercept Slope

C HA P T E R 1 WHA T ECONOMI CS I S A L L A BOUT

2

Economic systems

Chapter overview 2.1 2.2 2.3 2.4 2.5 2.6 2.7

Different economic systems The traditional system The command system The market system The mixed economy South Africa’s mixed economy The men behind the systems: Smith, Marx and Keynes Important concepts

Under capitalism, man exploits man, under socialism it is just the opposite. ANONYMOUS

Question: “What is socialism?” Answer: “The longest way to capitalism.” POLISH JOKE

It is not from the benevolence of the butcher, the brewer, or the baker that we expect our dinner but from their regard to their own interest. We address ourselves not to their humanity but to their self-love. ADAM SMITH

Learning outcomes Once you have studied this chapter you should be able to 䡲 describe the three central economic questions 䡲 describe the major differences between traditional, command, market and mixed economies 䡲 describe

the salient features of the market economy 䡲 briefly describe the contributions of Adam Smith, Karl Marx and John Maynard Keynes to economic science

In Chapter 1 you were introduced to various central concepts, such as scarcity, choice and opportunity cost. We now use three central questions that have to be solved in every society to introduce you to the basic types of economic systems. The three questions are: t What goods and services should be produced and in what quantities? t How should each of the goods and services be produced? t For whom are the various goods and services produced? Three main types of economic systems are then defined and described: the traditional system, the command system and the market system. Their key features, advantages and disadvantages are discussed and the mixed economic system is also defined. Finally, three important economists whose ideas helped to shape the different systems are introduced.

There was only tea and vinegar in the shops, meat was rationed and huge petrol queues were everywhere. Now I see people on the streets with cell phones and there are so many goods in the shops it makes my head spin. JAN GRZEBSKI, A Polish man who emerged from a coma after 19 years, a span of time during which communism fell and the polish economy transformed

25

2.1 Different economic systems Each society must provide answers to three central economic questions: t What goods and services will be produced and in what quantities? These are output questions. t How will each of the goods and services be produced? How much of the scarce resources will be used in the production of each good? These are input questions. t For whom will the various goods and services be produced? Who will receive the goods and services? How much of them will they receive? And where will the production occur? These are distribution questions. In this chapter we look at some of the basic mechanisms that are used to solve these questions. There are essentially three coordinating mechanisms: tradition, command and the market. These three mechanisms, along with property rights, form the basis of the most important economic systems – see Box 2-1. We discuss four systems: the traditional system, the command system, the market system and the mixed system. Our emphasis is on the market system and the mixed system, since most economies today are mixed systems in which the market plays a central role. A system is a network of parts which interlock to form an overall pattern. Examples include the nervous system of the human body, the solar system, the transport system of a country and its political system. An economic system is a pattern of organisation which is aimed at solving the above-mentioned three central questions. Economic systems do not always work well, but they are often so vast and complicated that it is quite marvellous that they work at all.

2.2 The traditional system The oldest solution to the three central questions is tradition. By this we mean that the same goods are produced and distributed in the same way by each successive generation. In a traditional system, each participant’s task and methods of production are prescribed by custom. Men do what their fathers did. Women do what their mothers did. People use the same techniques of production as their parents did and production is distributed according to longestablished traditions. A traditional economic system provides clear and easy answers to the three central questions. It is, however, a rigid system, which is slow to adapt to changing conditions and stubbornly resists innovation. Traditional systems tend to be subsistence eco-nomies. But this is usually not considered a drawback by the participants themselves. In traditional systems economic activity is not the first priority. Economic activity is usually secondary to religious and cultural values and the desire to perpetuate the status quo. Nowadays, purely traditional systems are not as common as they used to be. They tend to be limited to isolated and largely self-sufficient communities, for example in the Canadian Arctic, certain remote parts of Latin America, island communities in the Pacific, and various parts of Africa. This does not mean, however, that tradition is no longer an important mechanism for solving the central questions, even in more advanced societies. Important aspects of economic behaviour are still governed by tradition. Some children still follow in their parents’ footsteps. In wealthy families, for example, status and tradition are still important. But the children are not bound by tradition when they have to make important decisions about what to produce and how to produce it.

2.3 The command system The second solution to the central questions is command. In a command system the participants are instructed what to produce and how to produce it by a central authority which also determines how the output is distributed. Because the economy is governed and coordinated by a central authority, command systems are also called centrally planned systems. Central planning is obviously a tremendous task. Decisions have to be taken on how, where and for what purpose every natural resource, every labourer and every capital good are to be applied. The planners have to determine what consumer goods should be produced, how to produce them and how they are to be divided among consumers; how many resources should be allocated to the production of capital goods and how many to consumer goods; and what types of capital goods should be produced. These are but a few of the problems that the planners have to solve. This is an extremely difficult task, particularly in a changing environment. Mistakes are inevitable. Nevertheless, in the 1970s and early 1980s more than a third of the world’s population lived in countries that relied heavily on central planning. These countries included Russia, China, Poland, Romania, North Korea and East Germany. Since then, however, central planning has become almost obsolete. At the time of writing, North Korea was generally regarded as the best remaining example of a country in which the economy is still largely based on central planning. Command economies are often described as socialist or communist systems. Although central planning has been used mostly in socialist or communist systems, central planning is not necessarily synonymous with socialism 26

C HA P T E R 2 ECONOMI C SYST E M S

BOX 2-1 CLASSIFYING ECONOMIC SYSTEMS No two economies have identical solutions to the questions What? How? and For whom? Each country has different institutions and there are almost as many kinds of economic system as there are national economies. Certain common features can be used, however, to classify economic systems. The two basic criteria are property rights and the coordinating mechanism. tùProperty rights. The oldest known classification of economic systems distinguishes between economies according to the predominant form of ownership of the factories, farms and other productive assets (ie according to property rights). Property rights refer to the right to possess, use or dispose of tangible assets (eg houses) and intangible assets (eg patents) as well as the right to all or part of the income generated by those assets. Property can be owned publicly or socially by different levels of government (central, provincial or local government), the personnel of a firm (workers’ management) or public boards (as in socialism), or it can be owned privately by individuals, partnerships, cooperatives and companies (as in capitalism). tùCoordinating mechanisms. Every economy has to: determine what is to be produced, where, how and how much; allocate the aggregate amount of goods and services produced between private consumption, collective consumption and investment in capital goods; distribute the material benefits among the members of society; and maintain economic relations with the outside world. A coordinating mechanism is a means of providing and transmitting information so as to coordinate the economic activities of the great number of participants in an economy. Economic systems are often classified according to their predominant coordinating mechanism. In a market economy coordination is achieved through the market mechanism or price system, ie through the free and spontaneous movement of market prices, as determined by the operation of the forces of supply and demand. In a centrally planned economy coordination of decisions is achieved by means of a central plan, drawn up by a central planning authority. On the basis of these two criteria, economic systems may be classified broadly as: tùNBSLFUDBQJUBMJTN QMBOOFETPDJBMJTNPSNBSLFUTPDJBMJTN Market capitalism (or a capitalist market economy) is characterised by the private ownership of the factors of production. Decision making is decentralised and rests with the owners of the factors of production. Their decisions are coordinated by the market mechanism. Examples of capitalist market economies include the USA and Canada. When people refer to a capitalist economy, market economy or free enterprise economy, they actually have in mind a capitalist market economy. When people refer to a mixed capitalist economy, they are drawing attention to the fact that not all the productive assets are in the hands of private people, but that some are government owned. In a mixed market economy (or market-oriented system) economic decisions are made partly through the market and partly by government. The degree of the mix varies from country to country. In a free-market economy all decisions are made by individual households and firms with no government intervention. A free-market economy is a theoretical construct and does not exist in real life. Planned socialism (or centrally planned socialism or command socialism) is an economic system characterised by public ownership of the factors of production. Decision making is centralised and is coordinated by a central plan, which contains binding directives (commands) to the system’s participants. Examples of socialist planned economies are North Korea and the former Soviet Union. A mixed command economy is a planned economy that makes some use of markets, as in the People’s Republic of China in recent decades. Market socialism is an economic system characterised by the public ownership of the factors of production. Decision making is decentralised and is coordinated by the market mechanism. Examples are the former Yugoslavia and the post-war economic system in Hungary prior to the late 1980s. Note that communism is not defined as an economic system. Communism is a political system rather than an economic system. Communist countries function under a single, dominant communist party.

C HA P TER 2 E C O N O MIC S Y S T E M S

27

or communism. Central planning refers to the way in which economic activity is coordinated, while socialism and communism refer to the ownership of the factors of production – see Box 2-1. In a pure socialist system, all the factors of production except labour are owned by the state. In a pure communist system all resources are in principle owned by everybody – everything is common property. In practice, however, command systems are characterised not only by central planning but also by state ownership of all goods, services and factors of production (except labour). Command systems therefore tend to be socialist systems. As mentioned, there are few centrally planned or command systems in force today. Even in the few remaining countries where central planning is still proclaimed to be the basis of the economic system, increasing reliance is being placed on the market as a mechanism for coordinating economic activity. Never theless, some elements of the command mechanism are used in all economies. The government plays an important role in every country. All government activity has to be planned and coordinated by some central body or bodies. In other words, even in market or capitalist systems the command mechanism is still alive and well. We shall return to this point in our discussion of the mixed economic system.

2.4 The market system Whereas traditional and command systems are relatively easy to comprehend, the market system requires more detailed explanation. In a market system the method of coordination is so subtle and intricate that it could not have been invented. It simply happened. To explain this, we first have to explain what a market is. Most people think of markets as specific places (or locations) where certain goods are bought and sold. Most of you have seen a meat market, fish market, vegetable market, fruit market or flea market in action. These markets all have particular venues. But a market does not require a specific location. A market is any contact or communication between potential buyers and potential sellers of a good or ser vice. This contact can be personal, or it can take place by means of a telephone, a fax machine, a computer, a smart phone, newspaper advertisem*nts or any other means. Any institution or mechanism which brings potential buyers (“demanders”) and prospective sellers (“suppliers”) of particular goods and services into contact with each other is regarded as a market. Markets can be local, regional, national or international. The corner café and a spaza shop are examples of local markets. The JSE is a national market where shares are traded. The London gold market is an example of an international or world market. When we explain how markets work, in the rest of this book, we shall often use concrete examples of markets with a specific location, such as fruit and vegetable markets. But you will also encounter more abstract national markets such as the labour market, the money market, the capital market and the foreign exchange market, which have no specific location. In the foreign exchange market, for example, dealers in foreign exchange buy and sell currencies like dollars, pounds sterling, euros, yen and rand through national and international telephone, facsimile and computer networks. For a market to exist, the following conditions have to be met: tù5IFSFNVTUCFBUMFBTUPOFQPUFOUJBMCVZFSBOEPOFQPUFOUJBMTFMMFSPGUIFHPPEPSTFSWJDF tù5IFTFMMFSNVTUIBWFTPNFUIJOHUPTFMM tù5IFCVZFSNVTUIBWFUIFNFBOTXJUIXIJDIUPQVSDIBTFJU tù"OFYDIBOHFSBUJPoUIFNBSLFUQSJDFoNVTUCFEFUFSNJOFE tù5IFBHSFFNFOUNVTUCFHVBSBOUFFECZMBXPSCZUSBEJUJPO In practice, sellers usually fix their prices, and prospective buyers shop around to find the best bargain. For example, if you want to buy a refrigerator you will go to a number of shops that sell refrigerators before you decide from which seller you are going to buy. A market system is one in which individual decisions and preferences are communicated and coordinated through the market mechanism (ie the mechanism which meets the conditions listed above). The most important elements of this mechanism are market prices. Market prices are signals or indices of scarcity which indicate to consumers what they have to sacrifice to obtain the goods or services concerned. At the same time market prices also indicate to the owners of the various factors of production how these factors can best be employed. However, the types of goods and services produced also depend on the distribution of income – the consumers with the most “money votes” have the largest impact on demand, market prices and the structure of production. They therefore dominate the outcome of the market processes.

28

C HA P T E R 2 ECONOMI C SYST E M S

Market systems are often called capitalist systems. Like socialism, capitalism refers to a particular type of ownership of the factors of production. Whereas most factors of production in a socialist system are owned by the state (or by society at large), a capitalist system is characterised by private ownership. Market systems are, however, not necessarily capitalist systems. The market mechanism can also be used in socialist systems. It is thus possible to have market socialism. But just as the command mechanism tends to be used primarily in socialist systems, the use of the market mechanism tends to coincide with the capitalist system of ownership. In the rest of this book we shall concentrate on market systems in which most of the factors of production are privately owned. In other words, the focus is on market capitalism. Such an economic system is characterised by individualism, private freedom, private property, property rights, decentralised decision making and limited government inter vention. Most of the means of production are owned by individuals who take decisions based on their self-interest. While the government does own property, such as government offices and embassies in other countries, most property is owned privately. Moreover, individuals’ property rights are protected by law and they are usually free to sell their property as they choose (subject only to certain laws and regulations governing such transactions). The most basic condition is that they may not infringe on the legal property rights of others. In market capitalism, economic activity is driven by self-interest. Consumers want to maximise their satisfaction. Business people wish to maximise their profits. Workers want the highest possible income for a given amount of work. How does a system in which self-interest plays a crucial role succeed in solving the central questions? Two centuries ago, Adam Smith, the Scottish professor who is generally regarded as the father of the capitalist market system, dealt with the same issue as follows: [E]very individual … generally, indeed, neither intends to promote the public interest, nor knows how much he is promoting it … he intends only his own gain, and he is in this, as in many other cases, led by an invisible hand to promote an end which was no part of his intention. Nor is it always the worse for the society that it was no part of it. By pursuing his own interest he frequently promotes that of the society more effectually than when he really intends to promote it. (Adam Smith. 1776. The wealth of nations, 423)

In other words, Smith claimed that the market mechanism works like an invisible hand which coordinates the selfish actions of individuals to ensure that everyone is better off. Let us take a closer look at how this is achieved. What will be produced in a market system? The answer is those goods and services that consumers are willing to spend their income on and which can be supplied profitably. Goods that consumers do not want will not be produced. If some uninformed business person happens to produce unwanted goods, he or she will incur losses and cease to produce the goods in question. Only those goods which can be produced and sold profitably will continue to be produced. How will it be produced? In a market system producers are forced to combine resources in the cheapest possible way (for a particular standard or quality). Their decisions on the combination of factors of production are governed by the prices of the various factors and their productivity. For whom will the goods and services be produced? In a market system the goods and services go to those who have the means to purchase them. This, in turn, is linked to the production process. Production generates income and freemarketeers argue that in a pure market system the income earned will reflect the value placed on each person’s resources. In other words, they argue that there is a direct link between what you put into the system and what you get out of it. Exceptions arise only if a society, through its government, chooses to assist certain individuals and groups, for example the handicapped and the elderly. In a capitalist market economy the different economic agents pursue their self-interest by responding to pecuniary (ie monetary) incentives. Workers work harder, smarter or longer if they have the prospect of increasing their money income, and therefore their ability to purchase goods and services. Firms invest time, money and effort and take risks if they have the prospect of earning profits or increasing their profits. All agents respond to price signals. For example, if one of the leading supermarkets advertises “specials”, consumers react by purchasing more of the goods concerned. When high profits are earned in a particular industry, more firms will be attracted towards that industry. Likewise, occupations or professions in which remuneration is high will tend to attract most new entrants. In recent decades, for example, the increasing professionalisation of sport and the astronomical amounts that successful sportsmen and women earn have persuaded an increasing number of young people to enter the world of professional sport. For some it can be lucrative, but success is by no means guaranteed. Sports people compete against each other and only the successful ones are rewarded – see Box 2-2.

C HA P TER 2 E C O N O MIC S Y S T E M S

29

Competition is an important feature of market capitalism. It occurs on each side of the market, that is, among suppliers (sellers) or among buyers (consumers). Competition should not be confused with negotiation which occurs between buyers and sellers, that is, across the different sides of the market. Competition among sellers protects consumers against exploitation and promotes efficiency and growth. Such competition creates order among suppliers. The successful ones are rewarded in the form of profit while the unsuccessful ones make losses and are eliminated. Unfortunately competition is not always free and fair. Most markets in the real world are characterised by imperfect competition. Even the protagonist of the market system, Adam Smith, wrote: People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends up in a conspiracy against the public, or in some contrivance to raise prices. (Adam Smith. 1776. The wealth of nations, 130)

The existence of imperfect competition does not imply that the market system does not work. But it does mean that the results are not always as favourable as the proponents of the free market system would have us believe. The pure market system has a number of serious defects, including a tendency to inequality and instability. A number of adjustments have to be made to compensate for these defects and the government has to take responsibility for these adjustments. After all is said and done, however, the market system is still a wonderful thing – see Box 2-3. It is almost inconceivable that a complicated economic system can function quite smoothly without some agency to coordinate the millions of decisions taken by the various participants every day. In a market system, decisions are reflected in market prices which constitute a vast signalling system that directs and controls economic activity. See Box 2-4. See also Box 2-5 on the role of money in the market system.

2.5 The mixed economy In the real world no economic system is based purely on tradition, command or the market. All economic systems are a mixture of traditional behaviour, central control and market determination. They are therefore often described as mixed systems, although one of these three mechanisms usually dominates. During most of the 20th century there was a great debate about the relative merits of command and the market as mechanisms for coordinating economic behaviour. There was also great competition between the capitalist and communist countries – the so-called Cold War between the largely capitalist West and the communist bloc. This debate or competition was, for all practical purposes, settled internationally by the collapse of central planning in

BOX 2-2 THE WINNER TAKES ALL In 2003, Ernie Els started his golfing year on an extremely high note. After winning the Nedbank Challenge in December 2002 (earning prize money of $2 million), he won four of the first seven tournaments he played in 2003, finishing a close second in two more. In the space of a few months he earned almost R40 million in prize money alone. Many aspiring young golfers turn professional, dreaming of emulating Ernie’s performance. Some are quite successful, but the majority struggle to earn a decent living. In the 2002/2003 season, for example, 15 events were played on the Sunshine Tour. Trevor Immelman played in the richest four of these tournaments, won two and earned more than R2 million in prize money. Seven golfers earned more than R500 000 and twenty-eight earned more than R200 000. Professional golf can undoubtedly be rewarding. However, of the 462 professional golfers who qualified to play in at least one of these tournaments (and many did not qualify to play in any), 256 won no prize money at all. One golfer, who shall remain nameless, succeeded in qualifying for 14 tournaments but did not make the cut after the first two rounds in any of these tournaments and therefore earned absolutely nothing. Of those who did succeed in earning money, most were hardly able to cover their costs. In fact, the bottom 35 who earned prize money received a combined total of R95 253,10. The top 15 players earned half the total prize money, while the bottom 78 per cent won only five per cent of the total prize money. This example from the world of professional sport applies to the rest of the economy as well. In a capitalist market system the successful participants are often richly rewarded, but for every winner there are many who cannot compete successfully. As a result, the distribution of income tends to be highly unequal in such a system.

30

C HA P T E R 2 ECONOMI C SYST E M S

BOX 2-3 THE MIRACLE OF THE MARKET ECONOMY The market economy is a wonderful thing. In most countries there are millions of consumers whose needs and wants have to be satisfied. Their wants also change from time to time as their income or tastes change. On the other hand there are thousands of firms that produce or supply the goods and services that are required to satisfy the consumers’ wants. They use various production techniques which are also subject to change. Goods or inputs that are not available domestically have to be imported. How are all these activities coordinated in a market economy? This question was asked as long ago as 1845 by the Frenchman Frédéric Bastiat in his Sophismes économiques. On coming to Paris for a visit, I said to myself: Here are a million human beings who would all die in a few days if supplies of all sorts did not flow into this great metropolis. It staggers the imagination to try to comprehend the vast multiplicity of objects that must pass through its gates tomorrow, if its inhabitants are to be preserved from the horrors of famine, insurrection, and pillage. And yet all are sleeping peacefully at this moment, without being disturbed for a single instant by the idea of so frightful a prospect. On the other hand, eighty departments (a French term for districts) have worked today, without cooperative planning or mutual arrangements, to keep Paris supplied. How does each succeeding day manage to bring to this gigantic market just what is necessary – neither too much nor too little? What, then, is the resourceful and secret power that governs the amazing regularity of such complicated movements, a regularity in which everyone has such implicit faith, although his prosperity and his very life depend upon it? That power is an absolute principle, the principle of free exchange. (Emphasis in original.) More than a century later Paul Samuelson, the American economist who was awarded the Nobel Prize for Economics in 1970, returned to the same issue (and the same quotation) in his well-known textbook, Economics: To paraphrase a famous economic example, let us consider the city of New York. Without a constant flow of goods in and out of the city, it would be on the verge of starvation within a week. A variety of right kinds and amounts of food is involved. From the surrounding counties, from 50 states, and from the far corners of the world, goods have been travelling for days and months with New York as their destination. How is it that 10 million people are able to sleep easily at night, without living in mortal terror of a breakdown in the elaborate economic processes on which the city’s existence depends? For all this is undertaken without coercion or centralised direction by any conscious body! Everyone notices how much the government does to control economic activity … What goes unnoted is how much of economic life proceeds without direct government intervention. Hundreds of thousands of commodities are produced by millions of people more or less of their own volition and without central direction or master plan. The market economy, with all its imperfections, is indeed a wonderful thing. In a market economy no one is consciously concerned with production or distribution. The three central questions – What? How? and For whom? – are solved by an invisible force which Adam Smith called the invisible hand – see quote in text.

the 1980s and early 1990s. Nevertheless, the correct mixture between the market mechanism and government intervention, or between the private sector and the public sector, will always be an important issue. In other words, the appropriate “mix” of the mixed economy will always be debated. The mix also depends on the perceived problems of the society concerned and is thus likely to change over time.

C HA P TER 2 E C O N O MIC S Y S T E M S

31

BOX 2-4 THE FUNCTIONS OF PRICES IN A MARKET ECONOMY Prices serve two important functions in a market economy: a rationing function and an allocative function. As emphasised in Chapter 1, scarcity is the universal feature of economic life. Prices serve to ration the scarce supplies of goods and services to those who place the highest value on them (and can afford to pay for them). This is the rationing function of prices. Prices also serve as signals which direct the factors of production between different uses in the economy. In markets where there is excess demand, prices increase. Higher prices mean increased profit opportunities, ceteris paribus. The possibility of increased profits attracts additional factors of production (labour, capital, etc) towards the activities concerned. On the other hand, excess supply results in falling prices and losses, which drives factors of production away from the activities concerned. This is the allocative function of prices, which may be regarded as the driving force behind Adam Smith’s “invisible hand”, which we referred to earlier. In Chapter 5 we show how price controls and other forms of interference with the market mechanism prevent prices from fulfilling their rationing and allocative functions. Always bear in mind, however, that markets reflect only the plans of those who are able to participate as consumers or suppliers. Those who lack purchasing power or command over factors of production are not able to signal their wants or plans via the market. In markets only money votes count. Advocates of free markets claim that markets produce the most efficient allocation of resources and that the problem of income distribution is not an economic issue. Market outcomes, however, depend on the distribution of income. For each income distribution there is a different “efficient” allocation of resources. Economists therefore cannot simply dismiss the distribution of income as a non-economic issue.

BOX 2-5 THE ROLE OF MONEY IN A MARKET SYSTEM People often associate markets (and, for that matter, economics) with money and activities aimed at making money. As we have mentioned, the capitalist market system is based on the pursuit of self-interest and maximum gain. But economic activity is aimed at the maximum satisfaction of human wants, not at making money. Money is only a means towards an end and, as will be emphasised in Chapter 3, money is not a factor of production. Money is also not to be confused with income – see Chapter 14. In a market system money is primarily used as a medium of exchange. Money is a standard good that everyone knows and that everyone will accept in exchange for other goods and services. Money is a very convenient way of exchanging goods and services. It also makes specialisation possible. In a moneyless society people have to resort to barter. A barter system is a system in which goods and services are directly exchanged for other goods and services. This requires what is called a double coincidence of wants. For example, if Dolly makes shoes and wants a spade, she must find someone who makes spades and wants shoes. If she finds John who makes spades and finds out that he wants a shirt rather than shoes, then Dolly must first find someone who makes shirts and wants shoes. Once her shoes have been traded for a shirt, she can then trade the shirt for the spade she really wants. Barter is clearly a very complicated, cumbersome and time-consuming activity. Money eliminates the need for bartering and a coincidence of wants. It is therefore a very important invention. Money allows people to specialise. Every person can specialise in a particular type of economic activity. Some can work in factories, while others can work in mines. Some can be teachers, others can be nurses. Some can be doctors and others can be university professors. In the end they all earn money incomes which can then be used to purchase whatever they require and can afford. Without money this would not be possible. The monetary sector is discussed in detail in Chapter 14.

32

C HA P T E R 2 ECONOMI C SYST E M S

2.6 South Africa’s mixed economy The South African economy is a mixed economy in which private property, private initiative, self-interest and the market mechanism all play an important role. The South African economy is, however, also characterised by a substantial degree of government intervention. In this section we take a brief look at South Africa’s mixed economy. In pure market capitalism all factors of production are privately owned. In South Africa, as in all other countries, some enterprises, or significant shares of them, are owned directly or indirectly by the state. At the time of writing, examples included Transnet, the Post Office, Eskom, Armscor, the South African Broadcasting Corporation and Rand Water. State ownership of enterprises is a contentious issue. Some economists and politicians are in favour of selling these assets to the private sector. This is called privatisation. During the 1980s a number of state-owned enterprises were privatised, the largest of which was Iscor, which was privatised in 1989. During the early 1990s, however, there was strong support for nationalisation, that is, for the acquisition of privatelyowned assets by the state. Nationalisation, which is the opposite of privatisation, was originally one of the cornerstones of the economic policy of the African National Congress (ANC). The ANC repeatedly called for greater state ownership and government intervention to redress past inequities. However, by the time of the 1994 elections nationalisation was a relatively minor element of the ANC’s Reconstruction and Development Programme and in due course the privatisation drive, which had been abandoned in 1990, was resumed. Nowadays privatisation is often referred to as the restructuring of state assets. In recent years, however, the debate about nationalisation has been reopened by calls from the ANC Youth League, as well as from the Economic Freedom Fighters, for the nationalisation of the country’s mines. A second element of pure market capitalism is an absence of direct state interference in the economic decisions of consumers and producers. Consumers are free to decide what to consume while production is left to privately-owned firms. In practice, however, government participates in the economy in various ways, as buyer and seller of goods and services, as employer and as regulator. Some of these actions restrict the freedom of private consumers and producers. Government’s share in the South African economy has grown quite rapidly during recent decades. Again this is a major source of contention and debate. Freemarketeers call for less government interference in private decision making while others call for more intervention, particularly to combat poverty and to improve the material conditions of those who suffered under the apartheid system. One particular area of government intervention is price control. In a pure market system all prices are established through the market mechanism. South Africa, however, has a long history of price control and other forms of pricefixing by the government. Most of these controls and practices were abolished during the 1980s but certain prices, particularly the price of petrol, are still fixed or regulated by government. In pure market capitalism there is usually assumed to be perfect competition among sellers and among buyers of goods and services. Perfect competition is examined in Chapter 10. The distinguishing feature of perfect competition is that no buyer or seller can influence the price of the good or service in question. In practice, however, there are many instances where individual buyers or sellers (or groups of buyers and sellers) do have the power to influence prices. When this happens we have imperfect competition, which we discuss in Chapters 10 and 11. The existence of imperfect competition is one of the arguments that is used in support of government intervention in the economy. From this brief discussion it should be clear that South Africa does not have a pure market system. The system is a mixed one in which both the market mechanism and command or central direction (in the form of government intervention) play a signific-ant part. Moreover, the mix between the market and central organisation, or between the private sector and the public sector, changes all the time. Tradition also plays a role in directing economic activity in the mixed economy, but this role is relatively unimportant and we do not examine it any further.

2.7 The men behind the systems: Smith, Marx and Keynes Economic systems do not just happen. They evolve over time. And they are shaped by a variety of social, political, economic, historical, cultural and other influences. The ideas of economists also help to lay the foundations for economic systems. In this section we introduce you to three famous economists, Adam Smith, Karl Marx and John Maynard Keynes, whose ideas have helped to shape various economic systems.

Adam Smith (1723–1790) Adam Smith was born in 1723 in Kirkcaldy, a small fishing town near Edinburgh in Scotland. He studied at Oxford and at the age of 28 he was appointed as Professor of Logic at the University of Glasgow. Eight years later, in 1759, he published his first book, The theory of moral sentiments. This book on philosophy immediately made him famous and in 1764 he was appointed as the tutor of a young Scottish duke. He accompanied the wealthy duke on a two-year

C HA P TER 2 E C O N O MIC S Y S T E M S

33

educational tour of Europe for which he was paid £300 a year plus expenses and a pension of £300 a year for life. This was almost twice as much as Smith ever earned as a professor. On his return from the tour, Smith settled at Kirkcaldy where he spent most of the next ten years working on what was to become probably the most influential book on economics ever written. The book, published in 1776, was titled An inquiry into the nature and causes of the wealth of nations (see Box 2-6). This book, which is usually referred to simply as The wealth of nations, laid the foundation of economic science as we know it today. Much had been written on economics prior to 1776, but it was Smith who transformed the subject into a science and who first provided a detailed intellectual justification for free markets, both domestically and internationally. He is therefore universally regarded as the intellectual father of the market system and of capitalism. As the title of his book indicates, Smith’s primary aim was to find the sources of the wealth of nations. At that stage wealth was believed to be money, and more specifically gold and silver. Smith, however, said that the purpose

B O X 2 - 6 S O M E I M P O R TA N T A U T H O R S A N D B O O K S I N T H E H I S T O RY O F E C O N O M I C THOUGHT

The following books are among the most important written during the past few centuries. We refer to all these authors in this book. YEAR

AUTHOR

TITLE

1776

Adam Smith (1723–1790)

An inquiry into the nature and causes of the wealth of nations

1798

Thomas Malthus (1766–1834)

An essay on the principles of population

1803

Jean-Baptiste Say (1767–1832)

Traité d’economie politique (A treatise on political economy)

1817

David Ricardo (1772–1823)

Principles of political economy

1848

Karl Marx (1818–1883) Friedrich Engels (1820–1895)

The communist manifesto

1867

Karl Marx (1818–1883)

Das Kapital (Capital)

1890

Alfred Marshall (1842–1924)

Principles of economics

1936

John Maynard Keynes (1883–1946)

The general theory of employment, interest and money

1953

Milton Friedman (1912–2006)

Essays in positive economics

Adam Smith, Karl Marx, Friedrich Engels and John Maynard Keynes are all discussed in the text. Smith is usually regarded as the father of the classical school. This school included economists like Malthus, Say and Ricardo. Thomas Malthus was a parson who was worried about the rapid population growth of his time. He predicted that food production would not grow fast enough to provide food for the rapidly growing population. Jean-Baptiste Say was a French economist who is credited with coining the word “entrepreneur” and formulating the theory that supply creates its own demand. This theory became known as Say’s law. David Ricardo was a famous British economist who made many lasting contributions to economic science during his relatively short life, including the law of diminishing returns and the principle of comparative advantage. Alfred Marshall is generally regarded as the person who refined neo-classical economics as we know it today. Much of the microeconomic theory in this book can be traced to Marshall’s work. Milton Friedman was the leader of the monetarist school of thought which became very influential in the 1970s.

34

C HA P T E R 2 ECONOMI C SYST E M S

of economic activity is to satisfy human wants. To him, therefore, the wealth of a nation consisted of the annual production of goods which can be used to satisfy human wants. In other words, he emphasised the importance of total output or national product. As far as the sources of wealth (or the national product) are concerned, Smith emphasised the importance of three interrelated things: the division of labour, free trade and a limited role for government. The first chapter of The wealth of nations deals with the division of labour. The very first sentence reads as follows: “The greatest improvement in the productive powers of labour and the greater part of the skill, dexterity, and judgement with which it is anywhere directed, or applied, seem to have been the effects of the division of labour.” Smith was not the first to emphasise the importance of the division of labour but his contribution in this regard was unique in two respects. First, he used a very apt example to illustrate the point and, second, he realised that the division of labour is limited by the size of the market. Smith’s example of a pin factory is one of the classic examples in economics and is also quoted in Chapter 3. The division of labour (and the specialisation it entailed) was unquestionably an important determinant of economic growth. Smith realised, however, that the scope for the division of labour (and therefore economic growth) was limited by the size of the market, both domestically and internationally. Markets had to be expanded. Larger markets would lead to greater division of labour and increased economic growth. The necessary increase in the size of markets could only be achieved, however, if there were no impediments to free trade, both domestically and internationally. Smith believed in the effectiveness of decentralised decision making. According to him, individuals should be allowed to pursue their own self-interest and the market would then act as an invisible hand to ensure that their decisions would promote the national interest. He did not argue that private individuals are philanthropic or in any way devoted to promoting the public interest. The benefits occur only when individuals seek their own selfinterest through the market mechanism. Why should this happen? The answer is that individuals who seek their own advantage will be more efficient than any set of politicians or bureaucrats. In trying to produce the most value for themselves, individuals will in effect be producing the greatest possible value. By contrast, governments tend to be inefficient and wasteful. Smith’s belief in the efficiency of the market system extended to the trade between nations. The generally accepted view at the time was that nations should export as much as possible and import as little as possible. In this way a country could add to its stock of gold and silver, which was regarded as the wealth of the nation. Smith favoured free trade between nations and showed that this would be to everyone’s benefit as it would expand markets and the production of goods and services. He therefore argued strongly against restrictions on international trade as well as against all other forms of government intervention in economic affairs. However, he did not argue that government should adopt a completely “hands-off” approach. He simply believed that the role of government had to be limited to an absolute minimum. He identified three things which governments ought to do: the provision of national defence, the administration of justice and the provision of certain socially desirable services (such as education) that private interests might neglect. Adam Smith is a truly remarkable figure in the history of economics. He is important not only because of his writings but also because of the influence of his work on others. The wealth of nations laid the foundation for a whole school of economics, the classical school, which, in turn, provided the basis for the neo-classical school which is still very active today. In fact, much of the economic theory contained in this book can be traced to his original contribution and the impact it had on his followers.

Karl Marx (1818–1883) Karl Marx was born in Germany in 1818. He was a versatile scholar and a passionate revolutionary. He studied in Germany and in 1848 published The communist manifesto with his close friend and collaborator, Friedrich Engels. He practised journalism from time to time but his radical ideas cost him the chance of an academic appointment at a German university. In 1849 he settled in England where he did most of his scholarly writing in the British Museum in London. Marx’s ideas were never popular in establishment circles and his life was often hard. Had it not been for the financial support of his friend, Engels, he would probably not have survived and written what he did. In 1867 Marx published the first volume of his major work, Das Kapital (Capital). A further two volumes were issued by Engels after Marx died. Marx was a political scientist, historian, sociologist and economist. The central theme of his work was the historical evolution of institutions. In particular he regarded capitalism as a specific and temporary form of social organisation. He argued that capitalism was self-destructive and that it would be replaced by a classless system in which there would be no private property. His argument went roughly as follows: Labour is the source of all value. The value of every commodity ultimately depends on the labour embodied in it. Workers, however, are only paid enough to survive (ie a subsistence wage). Capitalists extract a surplus value from

C HA P TER 2 E C O N O MIC S Y S T E M S

35

the workers, since the value of the workers’ contribution exceeds the amount they receive in wages. The primary aim of capitalists is to increase this surplus value. They attempt to achieve this by employing more machinery and equipment. This increases total production but causes technological unemployment, which Marx called the industrial reserve army of the unemployed. Unemployment succeeds in keeping wages down but cannot create surplus value. Surplus value can only be created by the employment of labour. Marx thus saw internal contradictions in the working of the capitalist system. Capitalists want to increase surplus value (ie profit) but in the process they displace the real source of surplus value (labour) by machines. The poor, exploited working class is united into a powerful political force that is capable of seizing power through revolutionary action. Marx regarded such a revolution as inevitable, but he never provided any details about the new, classless socialist system that was to succeed capitalism. This is perhaps understandable, given his belief in the inevitable historical evolution of institutions such as economic systems. What is strange, however, is that he saw communism, which would succeed socialism, as a final system which would not be succeeded by anything else. This part of his argument is inconsistent with his basic idea of the historical evolution of institutions. Although there were undoubtedly flaws in Marx’s line of reasoning, his analysis of capitalism contained many important insights which had either escaped the attention of, or were ignored by, Adam Smith and his followers. These included the importance of mechanised, large-scale production and the worker alienation it produces, the problem of the business cycle, that is, the recurring expansion and contraction of industrial production, and the growing importance of purely financial activity. He also emphasised the importance of power and conflict in economic affairs. What he failed to anticipate, however, was the possibility that the capitalist system would adapt in order to deal with these problems. Among the most important changes that occurred were the rise of the trade union movement, which strengthened the bargaining power of workers, and the increasing degree of state intervention in the mixed economy, which helped to smooth the business cycle and improve the living conditions of the working class. Marx’s most powerful impact, however, was in the political sphere. His ideas were popular among revolutionaries and the working classes and there were many socialist and communist revolutions in the 20th century as a result of his influence. But whereas Marx had predicted that the ultimate socialist revolution would occur in the rich capitalist countries, the actual revolutions were mostly limited to poor, nonindustrial countries. The new rulers therefore had to devise their own ways and means of dealing with the central economic questions once the revolution had occurred. The results were often disappointing and by the end of the 20th century the wheel had almost turned full circle. Nowadays economic systems are largely based on private ownership, private initiative and the advantages of the market system. Karl Marx’s influence, however, is still felt all over the world. Marxist principles are still taught and Marxist scholars, schools of thought and political parties are still to be found in virtually every country in the world, including South Africa.

John Maynard Keynes (1883–1946) John Maynard Keynes (pronounced “canes”, as in cane furniture, sugar or spirits) was born in England in the year in which Karl Marx died. Whereas Marx had predicted the demise of capitalism, Keynes helped to lay the foundation for the mixed economy as we know it today. It can therefore be argued that Keynes helped to transform the capitalist system in such a way that Marx’s predictions of a popular revolution were never realised in the highly developed industrial countries. John Maynard Keynes was the son of an eminent Cambridge logician and political economist, John Neville Keynes. (It was his father who introduced the distinction between positive and normative economics explained in Chapter 1.) John Maynard Keynes was very versatile. At various times in his career he was a senior government official, an editor, publisher, businessman, teacher, college administrator and the foremost economist of his age. He was a prolific writer who wrote on a wide range of topics. His Collected writings, compiled by the Royal Economic Society, comprises 30 volumes. His most important book, The general theory of employment, interest and money (usually simply called The general theory) was published in 1936. This is generally regarded as the first systematic macroeconomic text. During the first few decades of the 20th century most economists believed in the efficiency and effectiveness of the market system. Like Adam Smith, they believed that private markets should be allowed to function freely without government intervention. If there were problems, these problems were ascribed to factors which interfered with the functioning of the market mechanism. The solution, therefore, was to eliminate these interferences. At the macroeconomic level, economists believed that there could not be a sustained period of unemployment. Unemployment was regarded as a temporary phenomenon which would be solved automatically if government, trade unions or other institutions did not interfere with the functioning of the market mechanism. 36

C HA P T E R 2 ECONOMI C SYST E M S

This belief that there would always be a natural tendency towards full employment was put to a severe test by the Great Depression, which started in 1929 and which affected most Western countries. From 1929 to 1933 the major industrial countries experienced falling production and high and increasing unemployment. For example, in the United States the value of total output was 46 per cent lower in 1933 than in 1929. During the same period the unemployment rate increased from 3,2 per cent to 24,9 per cent. Even in South Africa the value of total output fell by 21 per cent between 1929 and 1932, before recovering in 1933. This experience was clearly not an example of temporary problems regarding the functioning of the market mechanism. The intensity and international extent of the problem forced economists to reconsider their earlier positions. Keynes, who had been brought up in the classical tradition, realised that the foundations of classical thinking about the functioning of the economy had to be re-examined. He had no quarrel with the theory about how the market mechanism works at the microeconomic level. But he had serious doubts about the validity of transferring these principles to the macroeconomic level. In The general theory he deals primarily with large economic aggregates such as the total output of the economy, total employment and the general price level. His main message was that the aggregate level of economic activity is determined by the aggregate demand for goods and services. This was directly in contrast to the idea of the classical economists that total production (or aggregate supply) would create its own demand. This was called Say’s law, after the French economist JeanBaptiste Say – see Box 2-6. While the classical economists believed that there could never be a sustained deficiency of demand at the macroeconomic level, Keynes explained why aggregate demand could be insufficient to sustain the levels of production and employment. When this happened, the government had to stimulate the total demand for goods and services by applying the appropriate policy measures. These measures included raising government spending or decreasing taxes. Keynes therefore provided intellectual justification for government intervention to stimulate economic activity and reduce unemployment. Unlike Smith and Marx, Keynes did not propagate a new type of economic system, nor did he foresee major political changes. He was merely an economist who realised that the economic theory of his time was flawed in a number of respects. In particular, he realised that the analysis of individual markets was not appropriate to an analysis of the economy at the aggregate level. He did not invent macroeconomics – classical economists had also examined macroeconomic issues – but by focusing on aggregates he laid the foundation for modern macroeconomics, which is usually called Keynesian economics. Such was the impact of Keynes and his followers that it is often referred to as the Keynesian revolution in economics. Most of the macroeconomic analysis in this book also has its origin in The general theory and we shall refer to Keynes frequently in later chapters. Because he justified government intervention in the economy, Keynes is often blamed for the rapid growth in government’s share in the economy. Nevertheless, he was undoubtedly the most influential economist of the 20th century. He had a lasting impact on economic theory and policy and probably helped to save market capitalism from the collapse that Marx had predicted.

IMPORTANT CONCEPTS Tradition Command Market Economic system Traditional system Command system Market system Market prices

C HA P TER 2 E C O N O MIC S Y S T E M S

Incentives Competition Negotiation Capitalism Socialism Property rights Coordinating mechanism Free-market economy

Mixed economy Division of labour Money Barter system Privatisation Nationalisation Perfect competition Imperfect competition

37

Some useful websites in economics

General websites (containing resources for economists and links to other useful websites) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.rfe.org http://econwpa.wustl.edu http://netec.wustl.edu/WebEc www.helsinki.fi/WebEc International economic organisations International Labour Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.ilo.org International Monetary Fund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.imf.org Organisation for Economic Cooperation and Development . . . . . . . . . . . . . . www.oecd.org United Nations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.un.org United Nations Development Programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.undp.org World Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.worldbank.org Other international websites American Economic Association. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.vanderbilt.edu/AEA/ Centre for Economic Policy Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.cepr.org Institute for New Economic Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ineteconomics.org International Economic Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.iea-world.org South African websites Business Unity South Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.busa.org.za Chamber of Mines of South Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.bullion.org.za Cosatu (trade union federation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.cosatu.org.za Department of Labour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.labour.gov.za Department of Trade and Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.dti.gov.za Economic Society of South Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.essa.org.za Human Sciences Research Council . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.hsrc.ac.za National Treasury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.treasury.gov.za South African Government . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.gov.za South African Reserve Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.resbank.co.za Statistics South Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.statssa.gov.za

C HA P T E R 2 ECONOMI C SYST E M S

income and 3 Production, spending in the mixed economy

Chapter overview 3.1 3.2 3.3 3.4

Introduction Production, income and spending Sources of production: the factors of production Sources of income: the remuneration of the factors of production 3.5 Sources of spending: the four spending entities 3.6 Putting things together: a simple diagram 3.7 Illustrating interdependence: circular flows of production, income and spending 3.8 A few further key concepts Appendix 3-1 South Africa’s factor endowment Important concepts

In economics everything is related to everything else, often in more than one way. ANONYMOUS

Consumption is the sole end and purpose of all production. ADAM SMITH

The whole of science is nothing more than the refinement of everyday thinking. ALBERT EINSTEIN

Learning outcomes Once you have studied this chapter you should be able to 䡲 describe how total production, total income and total spending in the economy are related 䡲 distinguish between stocks and flows 䡲 describe the different sources of production and income 䡲 distinguish between households and firms and show how their decisions and activities are interrelated 䡲 show how the government sector interacts with households and firms 䡲 show how the foreign sector interacts with the domestic economy 䡲 describe South Africa’s factor endowment

In this chapter we focus on total production, income and spending in the mixed economy. We start by introducing these three important flows. We then look at each individually, starting with the sources of production, called the factors of production. This is followed by a brief discussion of the sources of income (the remuneration of the factors of production) and a longer one on the sources of spending (households, firms, the government and the foreign sector). In the next section everything is put together in a simple but extremely useful diagram. The focus then shifts to the interdependence of the main sectors in the economy, illustrated by various circular flow diagrams. The final section emphasises a few further concepts. There is also an appendix on South Africa’s factor endowment. This chapter is very basic but it is essential to obtain a good idea (and to form mental images) of how the main elements of the mixed economy fit together. 39

3.1 Introduction Experienced economists often stress that you need a good imagination to understand the functioning of the economy as a whole. When you are studying microeconomics, that is, when you are examining individual parts of the economy by putting them under a “microscope”, you can often fall back on your own experience. For example, everyone is a consumer and can therefore rely on his or her own experience when analysing individual or household decisions on what goods to buy, how time is spent, etc. In other words, you can place yourself in the position of the decision maker to try to understand how he or she behaves. You have probably also seen a vegetable market or a flea market and can therefore envisage what an individual market looks like and how it operates. However, at the macroeconomic level, that is, when you are dealing with the economy as a whole, things are different. No one has ever seen the South African economy and no one ever will. Moreover, the concepts we deal with at the macroeconomic level (like the market for all goods and services produced in a country) do not refer to things that really exist. There is no physical market where all goods and services are bought and sold. Likewise, the general price level is an abstract concept which does not exist in a physical sense. When dealing with the economy as a whole we therefore have to imagine things. We have to have mental pictures about how the economy fits together. A useful way of obtaining such pictures is to use simplified diagrams which set out the most important interrelationships between the major components of the economic system. In this chapter we introduce you to some of these diagrams. In addition we emphasise an important fact of economic life which non-economists often ignore or neglect when presenting their diagnoses and remedies for a country’s economic problems. This feature is the high degree of interdependence in an economic system. In an economic system everything does indeed depend on everything else. The chapter focuses on how things fit together in a mixed economy. We start by emphasising the three major flows in the economy as a whole: total production, total income and total spending. As you will see later in the book, these three flows and their interdependence form the cornerstone of the study of macroeconomics. We then look at the sources or components of production, income and spending. Thereafter we put everything together in a simple diagram. Then we focus on interdependence. We start off by considering an economy that consists only of households and firms. After describing what is meant by households and firms, we construct a simple picture of how they are linked. In the following section we introduce the government, and then add it to the previous picture. The next step is to introduce the rest of the world, which we call the foreign sector. At that stage we have various pictures of how households, firms, the government and the foreign sector interact. The overall picture is completed by also pointing out where the financial sector fits into the picture. We round off the chapter by introducing some key concepts and listing the five main macroeconomic objectives. There is also an appendix on South Africa’s factor endowment. As mentioned earlier, the purpose of the pictures in this chapter is to obtain some mental image of how the economy fits together. We show the major parts and how they are interrelated. These pictures are gross simplifications, since we ignore many details. But they are essential to our understanding of how the economy works. Without such pictures it is virtually impossible to make sense of the complicated workings of the economic system.

3.2 Production, income and spending As we saw in Chapter 2, economics is essentially concerned with what to produce, how to produce it and how to distribute the products between the various participants. Note that the focus is on production. It stands to reason, therefore, that the total production of goods and services is of major concern to economists. But production is not pursued for its own sake. The ultimate aim is to use or consume the products to satisfy human wants. The logical sequence is therefore as follows: production creates income (earned in the production process by the various factors of production) and this income is then spent to purchase the products. The sequence contains three major elements: production, income and spending. In practice, of course, everything is happening at the same time: production occurs, income is earned, and all or part of the income is spent to buy the goods and services that are available. In other words, there is a continuous circular flow of production, income and spending in the economy – see Figure 3-1. One aspect of the economic problem that is not included in this simple diagram is how the income is distributed among the various par ticipants in the economy. You will encounter this important issue at various places in the rest of the book. At this stage, however, we are primarily interested in how the major components of the mixed economy are linked. We therefore ignore the details of the distribution problem for the time being. These details are not essential to a basic understanding of how things fit together, and might divert your attention from the essential elements. We assume that the income earned by the various factors of production are the “correct” amounts and focus on total income rather than its distribution.

40

CHAP T E R 3 PRODUCTI ON, I NCOME A ND SPENDI NG I N THE MI XED E CON OM Y

FIGURE 3-1 The three major flows in the economy

Production

Spending

Income

Production generates income (for the various factors of production) and part or all of this income is then spent to buy the available goods and services. All these things are happening at the same time.

Production, income and spending are all flows. To understand what this means, we have to distinguish between stocks (which are measured at a particular point in time) and flows (which are measured over a period). To illustrate this, consider the level of the water in a dam. The level of the water in a dam can only be measured exactly at a particular point in time. For example, at 00:00 on 25 April 2014 the level of the Gariep dam was at 95,8 per cent of its capacity. This kind of variable, which can only be measured at a particular point in time, is called a stock variable, or simply a stock. The flow of water into the dam, on the other hand, can only be measured over a period, that is as a rate, irrespective of how short such a period might be. Thus, the flow into the Gariep dam can be expressed as so many cubic metres of water per second, per minute, per hour or per day. For example, on 25 April 2014 the inflow into the Gariep dam was measured at 88 cubic metres per second. This kind of variable, which can only be measured over a period, is called a flow variable or simply a flow. Production, income and spending all fall into this category – they are all flows which can only be measured over a period. In practice the total production, income and spending in the economy are measured quarterly but the main interest is in the annual levels of production, income and spending. Further examples of stocks and flows are provided in Box 3-1. In the rest of this book we shall frequently remind you of the difference between stocks and flows.

BOX 3-1 STOCKS AND FLOWS When considering any economic variable it is important to determine whether it is a stock variable (or stock) or a flow variable (or flow). A stock has no time dimension and can only be measured at a specific moment. When a shopkeeper takes stock, she counts all the goods in the shop at that particular time. A flow has a time dimension and can only be measured over a period. When a shopkeeper calculates her sales, profit or loss, the calculation is done for a period. Whenever we use a flow variable, the period concerned has to be specified. Stock statistics are “still pictures” of the economy, while flow statistics provide “moving pictures” of the economy. The classic distinction between stocks and flows, referred to in the text, is between the level of water in a dam and the rate at which water is flowing in or out of the dam. The following are some additional examples: Stock

Flow

Wealth Assets Liabilities Capital Population Balance in savings account

Income Profit Loss Investment Number of births and deaths Saving (ie the difference between income and spending during a period) Demand for labour Gold sales, gold production

Unemployment Gold reserves held by the South African Reserve Bank

CH A P T ER 3 P R O D U C TION, INCOM E AND S PE NDING I N THE MI X ED ECONOMY

41

Stocks and flows are related. Stocks can only change as a result of flows. The level of water in a dam can only increase if water flows into the dam; the capital stock can only increase if investment occurs; the population (stock) will change if the number of births (flow) or the number of deaths (flow) change. There are other types of variables apart from stocks and flows. Prices, for example, are ratios between different flows. Ratios between two stocks or between two flows have no time dimension, but a ratio between a stock and a flow or between a flow and a stock has a time dimension. The most important distinction, however, is between stocks and flows. Failure to distinguish between stocks and flows can easily lead to faulty reasoning and analysis. This will become apparent once we start analysing the economy. Whenever you encounter a variable in economics, you must therefore always first ascertain whether you are dealing with a stock or a flow.

In a mixed economy the households, firms, the government and the foreign sector all participate in the production process. They all contribute towards total production, they all earn an income and they all spend their incomes. Apart from production, income and spending, the other important economic activity that links the various sectors in an economy is exchange. In a mixed economy exchange usually occurs in markets. Goods, services and factors of production are all exchanged in markets. The two fundamental sets of markets in the economy are the markets for goods and services, usually simply called the goods markets, and the markets for the various factors of production, usually simply called the factor markets. Before we show how these sectors, activities and markets are interrelated, we first take a closer look at production, income and spending.

3.3 Sources of production: the factors of production There are four main factors of production: natural resources (or land), labour, capital and entrepreneurship. Natural resources and labour are sometimes called primar y factors of production, while capital and entrepreneurship are called secondar y factors. Another possible distinction is between human resources (labour and entrepreneurship) and non-human resources (natural resources and capital). We now discuss each of the four factors of production separately.

Natural resources (land) Natural resources (sometimes called land) consists of all the gifts of nature. They include mineral deposits, water, arable land, vegetation, natural forests, marine resources, other animal life, the atmosphere and even sunshine. Natural resources are fixed in supply. Their availability cannot be increased if we want more of them. It is, however, often possible to exploit more of the available resources. For example, new mineral deposits are still being discovered and exploited every year. But once they are used, they cannot be replaced. We therefore refer to minerals as non-renewable or exhaustible assets. As with all other factors of production, both the quality and the quantity of natural resources are important. Some countries cover a vast area but the land is of limited value. A desert, for example, has little or no agricultural value. But it may contain valuable mineral deposits. Some countries have a relatively small geographical area but a plentiful supply of arable land and minerals. The situation can also vary within a country. For example, in South Africa there are large areas with little or no agricultural or mineral value. But there are also areas that are rich in minerals or arable land. Because natural resources are in fixed supply, the rate at which they are exploited is often a cause of concern. Nowadays environmentalists are extremely concerned about pollution and the destruction of natural resources such as the rain forests.

Labour Goods and services cannot be produced without human effort. Labour can be defined as the exercise of human mental and physical effort in the production of goods and services. It includes all human effort exerted with a view to obtaining reward in the form of income. The efforts of goldminers, rubbish collectors, professional boxers, civil servants, engineers and university lecturers are all classified as labour. In modern societies there is a high degree of specialisation of labour – see Box 3-2.

42

CHAP T E R 3 PRODUCTI ON, I NCOME A ND SPENDI NG I N THE MI XED E CON OM Y

BOX 3-2 SPECIALISATION AND THE DIVISION OF LABOUR The ultimate aim of economic activity is to satisfy human wants. Different people produce different goods and services which are then exchanged (or traded) and eventually consumed. But this was not always the case. In primitive societies each household provided for the wants of the members of the household. Production and consumption occurred within the same household and there was little or no exchange or trade of goods and services between different households. But even in these primitive households there was some specialisation. For example, women performed tasks in and around the home while men would go hunting. But there was no division of labour. Division of labour occurs when a production process is broken up into different steps or parts, each of which is performed by an individual worker or group of workers. Each worker can then focus on a particular task. For example, a person who is competent in all the manual trades can construct a house without any assistance from anyone else. But it will take a lot of effort and time. Houses are usually constructed by teams which each specialise in a different part of the task, eg bricklayers, plasterers, plumbers, electricians, tilers and carpenters. This division of labour creates opportunities for specialisation and enables a group of people to build more houses than they would have been able to do if each one tried to build a whole house alone. The importance of the division of labour was recognised in the 18th century by Adam Smith, who is often regarded as the father of modern economics. His example of producing pins has become famous in economics and is quoted in virtually every introductory textbook. On the first page of his famous book, The wealth of nations, he wrote: To take an example … from a very trifling manufacture … the trade of the pinmaker; a workman not educated to this business … nor acquainted with the use of the machinery employed in it … could scarce, perhaps … make one pin in a day and certainly could not make twenty. But in the way in which this business is now carried on, not only the whole work is a peculiar trade, but it is divided into a number of branches … One man draws out the wire, another straightens it, a third cuts it, a fourth points it, a fifth grinds it at the top for receiving the head … ten persons … could make among them upwards of forty-eight thousand pins a day. Each person, therefore, … might be considered as making four thousand eight hundred pins in a day. The division of labour has a number of advantages, including the following: tù *Usaves time. One person handling different tools and moving from one work position to another entails a considerable waste of time. With the division of labour each worker performs a single task, which saves a lot of time. tù *UFOBCMFTXPSLFSTUPCFallocated to tasks that they are best suited for. People have different abilities – for example, some are physically strong while others are more skilled at performing intricate tasks which do not require physical strength. t ù*UFOBCMFTXPSLFSTUPdevelop specific skills. If the production process is divided into specific tasks, each worker becomes skilled at his or her task. It is also easier to train workers in specific tasks. t ù*UNBLFTmechanisation possible. The division of labour breaks a single task up into a number of simpler tasks that can often be performed by machines, which can work for 24 hours a day. Workers then only need to supervise the process. Some processes can be refined further so that even the supervision can be performed by machines. This is referred to as automation. t ù*Uleads to better quality. The division of labour allows greater uniformity in quality and makes it possible to exercise quality control at various stages in the production process.

CH A P T ER 3 P R O D U C TION, INCOM E AND S PE NDING I N THE MI X ED ECONOMY

43

However, the division of labour also has some disadvantages. The most important disadvantage is that work can become monotonous and boring. Workers often feel bored, less responsible and less fulfilled if they are performing simple, repetitive tasks which require little thought. They also cannot appreciate their individual contributions to the end product, and they may therefore lose interest in the quality of their work – this is known as worker alienation. Another important disadvantage is that people (and processes) become more and more interdependent. If a breakdown occurs at one point, then everyone is affected. In fact, modern societies are highly interdependent. One person’s well-being depends on the activities of other people; one production process depends on the smooth running of other production processes; one firm depends on other firms, and so on. In the modern economy this interdependence even reaches across national boundaries, with production processes in one country being dependent on inputs received from other countries. As we emphasise in this chapter, interdependence is one of the major features of any modern economy. This means that individuals, sectors and countries are all vulnerable to changes in the domestic and international economy. Note that the specialisation of labour is a broader concept than the division of labour. Specialisation refers to the tendency of people, businesses and countries to concentrate on different activities to which they are best suited: some people specialise in law, others in medicine; some firms produce clothes while others produce food; some countries specialise in producing minerals, while others produce machines, and so on. The division of labour refers to the act of assigning individual workers to different tasks which form part of a production process. As emphasised by Adam Smith, specialisation creates wealth. But the gains from specialisation can only be achieved if there is exchange or trade between the different participants. Individuals, businesses and countries trade the goods and services in which they specialise for goods and services produced by others. Without exchange, specialised producers cannot satisfy their consumption wants from their own production.

The quantity of labour depends on the size of the population and the proportion of the population that is able and willing to work. The latter, in turn, depends on factors such as the age and gender distribution of the population. The proportion of children, women and elderly people all affect the available quantity of labour, which is called the labour force. The quality of labour is even more important than the quantity of labour. The quality of labour is usually described by the term human capital, which refers to the skill, knowledge and health of the workers. Education, training and experience are all important determinants of human capital.

Capital Capital comprises all manufactured resources, such as machines, tools and buildings, which are used in the production of other goods and services. Capital goods are not produced for their own sake but to produce other goods. Capital can be a confusing concept, particularly because it is often used in a financial or monetary sense. Business people, bankers and accountants all have their own definition of capital. Even in economics the term sometimes has a financial connotation. It is important to remember, however, that when we talk about capital as a factor of production, we are referring to all those tangible things that are used to produce other things. To produce capital goods, current (ie present) consumption has to be sacrificed in favour of future consumption. As explained in Chapter 1, the more capital goods that are produced in a particular period, the fewer the number of consumer goods that will be produced in that period, but the greater the production capacity will be in future. On the other hand, if all current resources are used for producing consumer goods, the future means of production will be fewer. Like all other goods, capital goods do not have an unlimited life. Machinery, plant, equipment, buildings, dams, bridges and roads are all subject to wear and tear. Equipment can also become outdated or obsolete because of technological progress. For example, huge mainframe computers installed a decade or two ago have been replaced by much smaller, cheaper and more efficient personal computers. Provision therefore has to be made for the replacement of existing capital goods. This is called the provision for depreciation (or depreciation allowance). In the national accounts (see Chapter 13) it is referred to as consumption of fixed capital.

44

CHAP T E R 3 PRODUCTI ON, I NCOME A ND SPENDI NG I N THE MI XED E CON OM Y

Entrepreneurship The availability of natural resources, labour and capital is not sufficient to ensure economic success. These factors of production have to be combined and organised by people who see opportunities and are willing to take risks by producing goods in the expectation that they will be sold. These people are called entrepreneurs. The word entrepreneur comes from the French word entreprendre which means “to undertake”. The term was coined at the beginning of the 19th century by the French economist Jean-Baptiste Say (see Box 2-6). The entrepreneur is the driving force behind production. Entrepreneurs are the initiators, the people who take the initiative. They are also the innovators, the people who introduce new products and new techniques on a commercial basis. And they are the risk-bearers, the people who take chances. They do this because they anticipate that they will make profits. But they may also suffer losses and perhaps bankruptcy. The entrepreneur is more than a manager. The entrepreneur is dynamic, a restless spirit, an ideas person, a person of action who has the ability to inspire others. Because entrepreneurship is such an important factor of production, a lot of research has been done to identify the characteristics of successful entrepreneurs. What drives an entrepreneur? What differentiates entrepreneurs from other human beings? Unfortunately there are no simple answers. There is, for example, still a lively debate on the question of whether entrepreneurial talent comes naturally or whether it can be acquired (eg through appropriate training). All that can be stated with certainty is that entrepreneurship is an important economic force. In countries where entrepreneurship is lacking, the government is sometimes forced to act as entrepreneur in an attempt to stimulate economic development.

Technology Technology is sometimes identified as a fifth factor of production. At any given time, a society has a certain amount of knowledge about the ways in which goods can be produced. When new knowledge is discovered and put into practice, more goods and services can be produced with a given amount of natural resources, labour, capital and entrepreneurship. If this happens we say that technology has improved. The discovery of new knowledge is called invention, while the incorporation of this knowledge into actual production techniques and products is called innovation. The wheel, the steam engine and the modern computer are all examples of important inventions. For these inventions to be used in actual production, new machines (ie capital goods) have to be developed. In other words, the inventions have to be embodied in capital. The application of inventions also requires entrepreneurs to identify the opportunities and exploit them. Thus, while technology is important, it can be argued that it forms part of capital and entrepreneurship. In this book, we therefore do not deal with it as a separate factor of production.

Money is not a factor of production Money is often regarded as the key to everything else. People frequently say “money can buy anything” or “money is power”. Money is important, but it is not a factor of production. Goods and services cannot be produced with money. As we explain in Chapter 14, money is a medium of exchange. Money can be exchanged for goods and services. Money is therefore something which facilitates the exchange of goods and services. But money cannot be used to produce goods and services. To produce goods and services we need factors of production such as natural resources, labour and capital.

The choice of technique The question of how the goods and services should be produced essentially involves choosing the best methods of production to produce the various goods and services. Frequently, various techniques are available to produce a particular good. For example, a dam or a road may be built with large machines and relatively little labour, or it may be built with less sophisticated equipment and more labour. When the production process is dominated by machines we talk about capital-intensive production. On the other hand, if the emphasis is on labour, the technique is labour intensive. The appropriate choice of technique will depend on the availability and quality of the various factors of production as well as their relative cost. In a rural community which does not have access to capital goods such as tractors there may be no option but to use unsophisticated equipment and a lot of physical effort to produce food or other goods. However, in the modern economy, where different options are available, the choice of technique will depend, inter alia, on the relative prices of the factors of production (eg wages and interest rates).

3.4 Sources of income: the remuneration of the factors of production As indicated earlier, income is generated through production. The only way in which the total income in the economy can be raised is by increasing production. Individuals may, of course, benefit at the expense of other individuals. For example, if Jabu wins the lottery, he benefits, but at the expense of all those who bought tickets and won nothing. However, for the economy at large, income can be increased only by producing more. Total income and total production are two sides of the same coin. CH A P T ER 3 P R O D U C TION, INCOM E AND S PE NDING I N THE MI X ED ECONOMY

45

Broadly speaking there are four types of income, each associated with a different factor of production. The remuneration of natural resources (or land) is called rent. Wages and salaries are the remuneration of labour, while the remuneration of capital is called interest. Finally, profit is the remuneration of entrepreneurship. The total income in the economy thus consists of rent, wages and salaries, interest and profit and the value of total income is identically equal to the value of total production.

3.5 Sources of spending: the four spending entities The third element of Figure 3-1 is spending or expenditure. There are four basic sources of spending in the economy: households, firms, the government and the rest of the world (the foreign sector). We now deal in turn with each of these entities.

Households A household can be defined as all the people who live together and who make joint economic decisions or who are subjected to others who make such decisions for them. A household can consist of an individual, a family or any group of people who have a joint income and take decisions together. Every person in the economy belongs to a household. The household is the basic decision-making unit in the economy. In primitive societies households were the only decision-making units. The others (firms, the government and the foreign sector) only came later. Recall, from Chapter 1, that the word “economics” is derived from a Greek word meaning the management of the household. This underlines the central role of households in the economy. Members of households consume goods and ser vices to satisfy their wants. They are therefore called consumers. The act of using or consuming goods and services is called consumption. The total spending of all households on consumer goods and ser vices is called total or aggregate consumption expenditure, or simply total consumption. We use the symbol C to indicate total consumption or consumer spending in the economy. (Note that a symbol is merely an abbreviation or shorthand for a concept or a variable.) Because households are the basic units in the economy, we often use the term households when we refer to individuals or consumers. In other words, the terms households, individuals and consumers are used interchangeably. In a market economy it is households or consumers who largely determine what should be produced. In a mixed economy most of the factors of production are owned by households. Labour is obviously owned by the members of households. Many of the other means of production, such as capital goods, are also owned by individuals. For example, even large business concerns like Anglo American, Sanlam and Pick n Pay are owned by their shareholders. The factors of production of these companies are therefore ultimately owned by individuals or households. Although households own the factors of production, these factors cannot satisfy human wants directly. Households therefore sell their factors of production (labour, capital, etc) to firms that combine these factors and convert them into goods and services. In return for the factors of production that they supply, the households receive income in the form of salaries and wages, rent, interest and profit. This income is then used to purchase consumer goods and services which satisfy their wants. In economic analysis we assume that consumers are rational. By this we mean that households always attempt to maximise their satisfaction, given the means at their disposal. To summarise: Every individual is a member of a household. Households are the basic units in an economic system. They own the factors of production and sell these factors on the factor markets to firms. In exchange for the services of their factors of production, households receive an income which they use to purchase consumer goods and services in the goods markets. These goods and services are then consumed to satisfy human wants.

Firms The next component of the mixed economy is the firm. A firm can be defined as the unit that employs factors of production to produce goods and services that are sold in the goods markets. Firms are the basic productive units in the economy. A firm is actually an artificial unit. It is ultimately owned by or operated for the benefit of one or more individuals or households. As mentioned above, even large firms are ultimately owned by their shareholders. Firms can take different forms – see Box 3-3. Whereas households are engaged in consumption, firms are engaged primarily in production. Firms are the units that convert factors of production into the goods and services that households desire. Firms are therefore the buyers in the factor markets and the sellers in the goods markets – see Box 3-4. In a market economy it is firms which largely decide how goods and services will be produced. 46

CHAP T E R 3 PRODUCTI ON, I NCOME A ND SPENDI NG I N THE MI XED E CON OM Y

BOX 3-3 DIFFERENT TYPES OF FIRMS Firms can take various forms. The following are the most common types of firms in South Africa. t Individual (or sole) proprietorships. Many firms are owned by a single person who makes all the decisions, receives the entire profits and is legally responsible for the debts of the firm. Examples include shops, cafés, farms, hairdressers and plumbing services. This type of firm is particularly suited to activities which require personal supervision but where the scale of operations and the financing requirements are not large. t P artnerships. This form of business does not differ much from individually owned businesses. Partnerships are suited to activities which do not require large amounts of financing but which need specialised ability. Partnerships are therefore often set up in the case of professional services. Doctors, dentists, attorneys, engineers and accountants frequently form partnerships. t C ompanies. A company is a business whose identity in the eyes of the law is separate from the identity of its owners. It is the least risky form of business, since the liability (and thus the risk) of the owners (or shareholders) is usually limited to the value of the shares they own. Companies can generally also attract more financing than other types of firms, through the sale of shares (equity) or bonds or via bank credit. There are two types of companies: private companies and public companies. A private company is limited to a maximum of 50 members and the right to transfer its shares is restricted. Private companies need have only one shareholder. In South Africa a private company can be identified by the abbreviation (Pty) Ltd which appears after its name. This is an abbreviation for “proprietary limited.” In contrast, a public company may not have fewer than seven shareholders. There is, however, no maximum number of shareholders in the case of public companies. A public company is a company that wishes to raise capital (in the financial sense) from the public and its shares are therefore easily transferable. Many public companies are listed on the JSE where their shares are traded every weekday. They are called listed companies. Examples include Anglo American, Remgro, Richemont, Old Mutual, Sappi, Sanlam and Sasol. Many foreign-owned or multinational companies also operate in South Africa. They include Shell, Microsoft, Siemens, Colgate-Palmolive, IBM, Philips and BMW. t C lose corporations. In 1985 a new form of business enterprise was introduced in South Africa. This was called the close corporation and it has to display the letters cc after its name. Close corporations were easier to establish than private or public companies but new close corporations can no longer be created. t O ther forms. Other forms of business enterprise include cooperatives (often used in agriculture), trusts and public enterprises such as public corporations. There are also numerous informal sector businesses, that is, businesses which are not formally registered. They include hawkers, street vendors, spaza shops, subsistence farmers, smugglers, prostitutes and shebeens.

In economic analysis we assume that firms, like households, are also rational. By this we mean that firms always aim to achieve maximum profit. Profit is the difference between revenue and cost. When analysing the decisions of firms, we ignore the differences between different types of firms. This enables us to treat the firm as the basic decision-making unit on the production or supply side of goods markets. All individuals who own or work for a firm are also members of a household. They are therefore engaged in two sets of decisions. They make consumer decisions like any other individual or household but when they are at work they make business decisions relating to the objectives of the firms that they own or work for. One of the factors of production purchased by firms is capital. As explained earlier, capital goods are man-made factors of production, such as machinery and equipment, which are used to produce goods and services. The act of purchasing capital goods is called investment or capital formation, which is denoted by the symbol I. Whereas households are responsible for spending on consumer goods (C), firms are responsible for spending on capital goods (I). To summarise: Firms purchase factors of production in the factor markets. They transform the factors into goods and services which are then sold in the goods markets.

CH A P T ER 3 P R O D U C TION, INCOM E AND S PE NDING I N THE MI X ED ECONOMY

47

BOX 3-4 THE GOODS MARKET AND THE FACTOR MARKET Goods market Recall from Chapter 2 that a market is any contact or communication between potential buyers and potential sellers of a good or service. There are thousands of markets for consumer goods and services in the economy. To understand how the different elements of the economy are related, we lump all these different markets together under the heading “the goods market”. In economics we call this “aggregation”. In macroeconomics we treat the goods market as if there were only one market for all goods and services in the economy. In microeconomics we analyse each of the markets individually. Factor market Factors of production are purchased and sold in many different markets. They are called factor markets. The factor markets include the labour market and the markets for capital goods. In macroeconomics we tend to aggregate the factor markets and treat them as if there were only one market for factors of production in the economy – “the factor market”. In microeconomics we examine the individual markets in detail.

The government The third main source of spending in the economy is government. Government is a broad term that includes all aspects of local, regional (or provincial) and national government. In economics we often refer to the public sector, which includes everything that is owned by government as the representative of the people. The composition of the public sector in South Africa is more closely examined in Chapter 15. Government includes all politicians, civil servants, government agencies and other bodies belonging to or under the control of government. It therefore includes the President, cabinet ministers, provincial premiers, mayors, everyone working for central government, provincial governments and municipalities, and public corporations such as Eskom, Transnet and the South African Reserve Bank. In their official capacities, the President, the Minister of Finance, all other politicians and all civil servants are part of the government sector, but in their private capacities they are all members of households as well. When they decide which goods to consume, they are driven by the same motives as any other individual or household, but in their official capacities they are supposed to serve the community at large. In contrast to households and firms, who are assumed to act rationally and consistently, we do not assume that government always acts in a consistent fashion. Government is supposed to attain national goals which may vary from time to time. For example, the objectives of the ANC government elected in South Africa in May 2014 differed radically in many respects from the objectives that were pursued by the National Party government during the heyday of apartheid. Another reason why government does not necessarily act consistently is to be found in the objectives of politicians and public officials (or bureaucrats). Every politician or public official has personal objectives (such as re-election, promotion, power, prestige) as well as public service objectives. For example, in a democratic system the main objective of politicians is to achieve success at the next elections. This often results in a bias towards policies which will yield immediate or short-term benefits. For the present it is sufficient to note a few important aspects of government activity. The primary function of government is to establish the framework within which the economy operates. Government also purchases factors of production (primarily labour) from households in the factor market and also purchases goods and services from firms in the goods market. In return, government provides households and firms with public goods and services such as defence, law and order, education, health services, roads and dams. These goods and services are financed mainly by levying taxes on the income and expenditure of households and firms. Government also transfers some of its tax revenue directly to needy people such as old-age pensioners. Government’s economic activity thus involves three important flows: t HPWFSONFOUexpenditure on goods and services (including factor services) – this is usually denoted by the symbol G t taxes levied on (and paid by) households and firms – taxes are usually represented by the symbol T t transfer payments, that is, the transfer of income and expenditure from certain individuals and groups (eg the wealthy) to other individuals and groups (eg the poor)

48

CHAP T E R 3 PRODUCTI ON, I NCOME A ND SPENDI NG I N THE MI XED E CON OM Y

The foreign sector The fourth major sector to consider is the rest of the world, which we call the foreign sector. The South African economy has always had strong links with the rest of the world. The South African economy is thus an open economy. Many of the goods produced in South Africa are sold to other countries while many of the consumer and capital goods consumed and used in South Africa are produced in the rest of the world. In addition, many foreign companies operate in South Africa while some South African firms also operate elsewhere. The various flows between South Africa and the rest of the world are summarised in the balance of payments, which is introduced in Chapter 13. In recent years the economic links between different countries have become stronger and more complex. This is usually described as globalisation. Advances in transport and communication have opened up international markets. Many firms therefore tend to look at the whole world as a potential market for their goods or services. Nowadays people often say that the world has become a global village in which firms from different countries have to compete with each other. It has also become very easy to shift funds between countries. Economic or political developments in a country can thus easily result in massive flows of funds into or out of that country. As you learn more about economics, you will come to realise that a country’s economic links with the rest of the world are often crucial determinants of the level and pace of economic activity in the domestic economy. This point is emphasised at various points in the rest of the book. The foreign sector consists of all countries and institutions outside the country’s borders. The flows of goods and services between the domestic economy and the foreign sector are exports, which we denote with the symbol X, and imports, which we denote with the symbol Z. Exports (X) are goods that are produced within the country but sold to the rest of the world. Imports (Z) are goods that are produced in the rest of the world but purchased for use in the domestic economy. South Africa’s exports consist mainly of minerals while the country’s imports are mainly capital and intermediate goods that are used in the production process. In the case of South Africa’s exports the spending originates in the rest of the world. This spending represents the income of our exporters. In the case of imports the spending originates in the domestic economy. This spending by importers represents the income of the other countries’ exporters.

Total spending: a summary In this section we have introduced total spending (or expenditure) in the economy. Note that “total” and “aggregate” are synonyms and that spending and expenditure also have the same meaning. These terms are used interchangeably in the rest of the book. In other words, when we talk about total spending and aggregate expenditure we are referring to the same flow. Aggregate spending on South African goods and ser vices consists of spending by the four sectors: t TQFOEJOHCZIPVTFIPMETPODPOTVNFSHPPETBOETFSWJDFT C) t TQFOEJOHCZmSNTPODBQJUBMHPPET I) t TQFOEJOHCZHPWFSONFOUPOHPPETBOETFSWJDFT G) t TQFOEJOHCZGPSFJHOFSTPO4PVUI"GSJDBOHPPETBOETFSWJDFT X) minus spending by South Africans on imported goods and services (Z) Total expenditure can therefore be written as C + I + G + X – Z. You will encounter these components of total expenditure frequently in the rest of the book.

3.6 Putting things together: a simple diagram At the beginning of this chapter we emphasised that to understand the economy we need mental pictures of how things fit together. One way of obtaining such mental pictures is to construct simple diagrams. Now that we have taken a closer look at the various elements of total production, income and spending in the economy we can revisit Figure 3-1 and add the various elements. This is done in Figure 3-2, which provides a simple but particularly useful summary of how things fit together in the economy. Without such guiding pictures one is almost guaranteed to become confused. Figure 3-2 shows that production is created by the factors of production (natural resources, labour, capital and entrepreneurship). These factors earn income (rent, wages and salaries, interest and profit). Spending is done by households, firms, government and the foreign sector (C + I + G + X – Z). In the next section we introduce another set of simple but useful diagrams which illustrate the interrelationships between the different sectors of the economy.

CH A P T ER 3 P R O D U C TION, INCOM E AND S PE NDING I N THE MI X ED ECONOMY

49

FIGURE 3-2 The different components of production, income and spending Natural resources, labour capital, entrepreneurship

Production

Households (C) Firms (I ) Government (G) Foreign sector (X – Z)

Spending

Income

Rent Wages and salaries Interest Profit

Production is created by the factors of production (natural resources, labour, capital and entrepreneurship). These factors earn income (rent, wages and salaries, interest and profit). Spending is done by households, firms, government and the foreign sector (C + I + G + X - Z).

3.7 Illustrating interdependence: circular flows of production, income and spending Households and firms

FIGURE 3-3 The circular flow of goods and services FIRMS

Factors of production

Goods and services

Households and firms interact via the goods market and the Factor Goods factor market. The interaction may be illustrated with the aid market market of a simple diagram, called the circular flow of goods and ser vices. In Figure 3-3 we show the households, the firms, Factors of Goods and the goods market and the factor market. The households offer production services their factors of production for sale on the factor market where these factors are purchased by the firms. The firms combine HOUSEHOLDS the factors of production and produce consumer goods and services. These goods and services are offered for sale on the goods market, where they are purchased by the households. Households sell their factors of production to firms Figure 3-3 shows the flow of goods and services and factors in the factor market. The firms transform these of production between households and firms. The interaction factors into goods and services which are then between households and firms can also be illustrated by sold to households in the goods market. showing the circular flow of income and spending, as in Figure 3-4. The flow of income and spending is usually a monetar y flow and its direction is opposite to the flow of goods and services. Firms purchase factors of production in the factor market. This spending by firms represents the income (wages, salaries, rent, interest and profit) of the households. The households, in turn, spend the income by purchasing goods and services in the goods market. The spending by households represents the income of the firms.

Adding the government As mentioned earlier, government’s economic activity involves three important flows: government spending G, taxes T and transfer payments. Unlike government spending and taxes, transfer payments do not directly affect the overall size of the production, income and expenditure flows. We therefore focus only on government spending and taxes. Government spending G constitutes an addition or injection into the flow of spending and income, while taxes T constitute a leakage or withdrawal from the circular flow of income between households and firms. The various links between government, on the one hand, and households and firms, on the other, are illustrated in Figure 3-5.

Adding the foreign sector As mentioned earlier, the spending on exports originates in the rest of the world. Exports thus constitute an

50

CHAP T E R 3 PRODUCTI ON, I NCOME A ND SPENDI NG I N THE MI XED E CON OM Y

FIGURE 3-4 The circular flow of income and spending

Spending

FIRMS

Factor market

addition or injection into the circular flow of income and spending in the domestic economy. In the case of imports, the production occurs in the rest of the world, while the spending originates in the domestic economy. Imports thus constitute a leakage or withdrawal from the circular flow of income and spending in the domestic economy. As in the other cases, the flow of income and spending is in the opposite direction to the flow of goods and services. We concentrate on the flow of income and spending between the domestic economy and the foreign sector rather than on the flow of goods and services. This flow of income and spending is shown in Figure 3-6.

Income

Goods market HOUSEHOLDS

Income (wages, profit, etc)

Spending

Financial institutions in the circular flow of income and spending In this subsection we show where financial institutions fit into the overall picture. Financial institutions include banks such as Standard Bank and Nedbank, insurance companies such as Old Mutual and Sanlam, pension funds such as the Mine Employees Pension Fund, and the JSE. These institutions are not directly involved in the production of goods. They act as links between households or firms with surplus funds and other participants that require funds, for example firms that wish to

Firms purchase factors of production in the factor market. Their spending represents the income of the households (ie the sellers of the factors of production). Households spend their income in the goods market on purchasing goods and services. Their spending represents the income of the firms.

FIGURE 3-5 The government in the circular flow of production, income and spending Labour, capital and other factors of production

Labour, capital, etc

GOVERNMENT

Goods market Goods

Public goods and services

Taxes

) tc ,e

e t m es co er In int , es

ag

(w

Labour, capital and other factors of production

Government spending

on Con go su od me s rs an p d en se din rv g ic es

Factor market

)

Government spending

Taxes

e ue m en co v In s re e al

Public goods and services

(s

on g in of d s n en tor tio Sp fac duc o pr

Goods and services

FIRMS

HOUSEHOLDS

Goods and services

The government purchases factors of production (mainly labour) from households in the factor market, and goods from firms in the goods market. Government provides public goods and services to households and firms. Government spending is financed by taxes paid by households and firms.

CH A P T ER 3 P R O D U C TION, INCOM E AND S PE NDING I N THE MI X ED ECONOMY

51

FIGURE 3-6 The foreign sector in the circular flow of income and spending

FIGURE 3-7 Financial institutions in the circular flow of income and spending FIRMS

FIRMS

Payment for imports (leakage)

Saving

Spending and income

Investment

Spending and income

FOREIGN SECTOR

Spending and income

Spending and income FINANCIAL SECTOR

Saving

Payment for exports (injection)

HOUSEHOLDS

Domestic firms and households import goods and services from the rest of the world. Payment for imports constitutes a leakage of income and spending to the rest of the world. Goods and services are exported to other countries. Payment for exports constitutes an injection into the circular flow of domestic income and spending.

HOUSEHOLDS

Households and firms do not spend all their income. Part of their income is saved. The saving flows to the financial sector which then lends funds to firms to finance investment spending.

expand their activities. In this regard one can distinguish between surplus units (ie those who are in a position to save because they spend less than they earn) and deficit units (ie those who require funds because their spending exceeds their income). To indicate the position of financial institutions or the financial sector in the economy, we use a simple circular flow which excludes government and the foreign sector. Households and firms who do not spend all their income during any particular period (ie surplus units) save some of their income. We use the symbol S to indicate saving. As far as households are concerned, the decision to save is a decision not to consume. In other words, saving can be defined as the act of not consuming. Likewise, firms can also save by not spending all their income. When saving occurs, there is a leakage or withdrawal from the circular flow of income and spending. Saving is channelled to financial institutions, for example in the form of saving deposits with banks. These funds are then available to firms that wish to borrow to expand their productive capacity (ie deficit units). Firms expand their productive capacity by purchasing capital goods such as machinery and equipment. Recall that this is called investment (I). When firms purchase capital goods, that is, when they invest, there is an addition or injection into the circular flow of income and spending. The main function of the financial sector is therefore to act as a funnel through which saving can be channelled back into the circular flow in the form of investment spending. In Figure 3-7 we show the circular flow of income and spending between households, firms and the financial sector. The financial sector acts as an intermediary between those who save and those who wish to invest. Households and firms channel their savings to the financial sector which then lends the funds to those firms that wish to borrow to invest. Saving is a withdrawal or leakage from the circular flow, whereas investment is an addition or injection. This also points to a connection between the expansion of the production capacity (through investment) and the decision to refrain from spending on consumer goods (saving). The importance of saving and investment is emphasised at various places in the rest of the book.We deal more fully with the financial sector in Chapter 14.

52

CHAP T E R 3 PRODUCTI ON, I NCOME A ND SPENDI NG I N THE MI XED E CON OM Y

The overall picture In this section the main flows and the four sectors have been combined to construct a number of pictures of how the main elements of the economy fit together. All the details were not included in every picture. Many other possible pictures can therefore also be constructed. Figure 3-8 represents one such picture. It is a combination of Figures 3-5, 3-6 and 3-7, and summarises most of the important concepts introduced in this chapter. As an exercise you can try to construct your own detailed picture of how the flows, markets and sectors are interrelated. This will help to give you that all-important “feel” for the basic fact of economic interdependence which is so essential in understanding how the economy works.

FIGURE 3-8 The major elements of the circular flow of income and spending FIRMS

S

Z

I

C

FOREIGN SECTOR

X

G C

FINANCIAL SECTOR

T S

GOVERNMENT

HOUSEHOLDS

This figure summarises the essence of the previous circular flow diagrams. The basic flow is between households and firms. This represents consumption expenditure (C). Saving (S), taxes (T) and imports (Z) are all leakages from the circular flow. Investment spending (I), government spending (G) and exports (X) are all injections into the circular flow.

3.8 A few further key concepts Specialisation and exchange Earlier in the chapter we distinguished between three basic flows in an economy: production, income and spending. Likewise, we may identify three main economic activities in a modern economy: production, exchange and consumption. The ultimate aim of economic activity is to satisfy human wants. Different people produce different goods and services which are then exchanged (or traded) and eventually consumed. As indicated in the discussion of labour, production is characterised by specialisation. Each person specialises in the production of certain goods and services. Even in particular production processes there may be specialisation. In the modern economy production processes are usually broken up into different stages or parts, each of which is performed by an individual worker or group of workers. This is called the division of labour. Specialisation creates wealth, but the gains from specialisation can be achieved only if there is exchange or trade between the different participants. Individuals, businesses and countries trade the goods and services in which they specialise for goods and services produced by others. Without exchange, specialised producers cannot satisfy their consumption wants from their own production.

CH A P T ER 3 P R O D U C TION, INCOM E AND S PE NDING I N THE MI X ED ECONOMY

53

Specialisation, opportunity cost and comparative advantage In which activity should a particular person, factor of production, firm or country specialise? The answer is where the opportunity costs are the lowest. If everyone specialises in activities where the opportunity costs are the lowest and they then trade with each other, everyone (eg individuals, firms, countries) will be better off than they would have been if each had tried to do everything by themselves. See also Box 3-5. The answer to the question posed above may also be formulated in terms of comparative (or relative) advantage. Suppose there are only two persons in a primitive society, John and Peter, and that John can hunt and cook better than Peter. Does this mean that it is better for John to hunt and cook and to leave Peter to do his own hunting and cooking? No. John may have an absolute advantage in hunting and cooking (meaning that he can do both better than Peter), but this does not mean that there is no scope for mutually beneficial specialisation and exchange. The answer lies in comparative (or relative) advantage and this is again linked to opportunity cost. John should specialise in the activity at which he is relatively better (in the sense of having the lowest opportunity cost), while Peter should specialise in the other activity (ie the one at which he is relatively better). For example, if John hunts three times as well as Peter but cooks only twice as well as him, John should specialise in hunting and Peter in cooking. In this case, John has a relative advantage in hunting (as well as an absolute advantage), while Peter has a relative advantage in cooking (even though he does not have an absolute advantage in anything). As long as opportunity costs differ, there is a basis for specialisation and exchange. However, if opportunity costs do not differ, for example if John is twice as good as Peter in hunting as well as in cooking, there is nothing to gain from trade. The principle of comparative advantage is so important that economists have formulated a law of comparative advantage. This law states that the total output of a group of individuals, an entire eco-nomy or a group of countries will be greatest when the output of each good is produced by the person, firm or country with the lowest opportunity cost for that good.

BOX 3-5 WHY DID CHARL SCHWARTZEL NOT FINISH MATRIC? Charl Schwartzel is a sensible, intelligent young man from a relatively privileged background. Why then did he not finish matric? The answer is that both he and his parents realised that he had the potential to be a successful professional golfer. He therefore left school early to pursue his golfing career. He soon started earning prize money and later started winning tournaments as well, culminating in his victory at the US Masters, one of the four major golf tournaments in the world. This victory should make him financially independent for the rest of his life. His decision to leave school has certainly been vindicated, but how do we explain it in economic terms? The answer is that the opportunity cost of continuing with his studies became simply too high. Put differently, his comparative advantage in playing golf became too great. By specialising in playing golf (and fortunately being successful at it), he put himself in a position where he can exchange his earnings from golf for whatever he needs.

The five main macroeconomic objectives Before moving on to microeconomics in Chapter 4, it is opportune to briefly note the five main macroeconomic objectives, which also serve as criteria to appraise the performance of the economy. These objectives, which are discussed in more detail in Chapter 13 and subsequent chapters, are: t FDPOPNJDHSPXUI t GVMMFNQMPZNFOU PSMPXVOFNQMPZNFOU

t QSJDFTUBCJMJUZ PSMPXJOnBUJPO

t CBMBODFPGQBZNFOUTTUBCJMJUZ PSFYUFSOBMTUBCJMJUZ

t TPDJBMMZBDDFQUBCMF PSFRVJUBCMF EJTUSJCVUJPOPGJODPNF

54

CHAP T E R 3 PRODUCTI ON, I NCOME A ND SPENDI NG I N THE MI XED E CON OM Y

AP P E N D IX 3-1 SO UTH AF R I CA’S FACTO R E N D OWM E NT South Africa, like other countries, is well endowed with certain factors of production and poorly endowed with others. This appendix provides a brief overview of South Africa’s position in respect of the different factors of production: natural resources (or land), labour, capital and entrepreneurship.

Natural resources One of the first features to consider when examining a country’s resources is its geographical location. Situated at the southern end of the African continent, South Africa forms part of sub-Saharan Africa. It is also isolated from the industrial countries and from the important international growth centres. The physical location of the country is therefore definitely a disadvantage, although African economies have been growing rapidly in the new millennium. The natural resources for agriculture are generally poor by world standards. Only about 13 per cent of South Africa’s land surface is suitable for cultivation. Another major problem is the climate. Most of the country is arid or semi-arid with a low and variable rainfall. Other problems include severe winter frosts and hail damage in the summer rainfall areas and severe and prolonged droughts which often end in floods. As a result of the general lack of rainfall only a small percentage of the country is suitable for dry-land crop production. In the rest of the country crops have to be grown under irrigation. On the positive side, the variety of climatic conditions allows farmers to grow almost every type of crop and to rear all types of livestock. South Africa can therefore produce a wide variety of agricultural products. As far as forestr y is concerned, South Africa has some beautiful natural forests that enhance the country’s tourist potential. They are, however, of little commercial value, having been overexploited prior to World War II. For the rest there are a large number of commercial plantations which mainly produce pulp for making paper and board and timber for the mining industry. South Africa has an extensive coastline with some of the finest beaches in the world. The sunny climate and the beaches are among the country’s most important tourist attractions. It is also fairly well endowed with marine resources. The fishing industry is relatively small, however. South Africa’s primary natural asset is its exceptional mineral wealth. The country is blessed with a large variety of minerals. South Africa is the world’s largest producer of a number of minerals and also has the largest known reserves of some minerals. Production and exports of minerals are dominated by coal, platinum group metals (PGMs), iron ore, gold and diamonds. The contribution of the other minerals is also important but relatively small in comparison to the most important ones. Minerals are non-renewable or exhaustible resources. South Africa cannot, therefore, base its economy on its mineral wealth forever. Other sectors of the economy must also be developed. As mentioned earlier, South Africa is a beautiful country with a variety of attractions and a wonderful sunny climate for tourists. Its natural tourist potential is an important resource. On the negative side, South Africa does not have navigable rivers (which would have reduced transport costs significantly). It also has no significant crude oil reserves. Natural gas was found off the southern Cape coast in the 1980s and exploited by Mossgas, but this venture was based on strategic rather than economic considerations. Nevertheless, South Africa is fortunate to have massive coal resources which are used for the generation of electricity (by Eskom) and the production of synthetic fuel at the various Sasol plants. Its energy resources are supplemented by some hydroelectric power and a nuclear power plant at Koeberg near Cape Town.

Labour The most important resource of any country is its people. Witness, for example, the economic success of Japan, South Korea and other East Asian countries which do not have abundant natural resources. In contrast, a number of African countries that are well endowed with natural resources have suffered economic stagnation or decline. Recall that labour includes the number of people engaged in or available for the production of goods and services and their physical and intellectual skills and effort. Both the quantity and the quality of labour are thus important. South Africa has a fairly large population which is growing rapidly. The natural growth is supplemented by large inflows of migrant workers from neighbouring countries. The number of workers or potential workers is therefore not a problem. The main problem is a lack of skills.

CH A P T ER 3 P R O D U C TION, INCOM E AND S PE NDING I N THE MI X ED ECONOMY

55

South Africa’s labour supply problems have been exacerbated in recent decades by the prevalence and spread of HIV/Aids. Apart from all its other effects, HIV/Aids has a significant unfavourable impact on the supply of skilled and experienced workers and therefore also on the productive capacity of the South African economy. One of the greatest challenges facing the South African economy is to try to increase the supply of skilled labour. How can this be achieved? The answer lies in areas such as education, training and human development in general. In this regard it should be noted that South Africa’s labour position has been adversely affected by racial discrimination in the provision of education and training and by job reservation during the apartheid era. Things have changed, but unfortunately it takes time to improve the situation through education and training. In the meantime South Africa is still faced with a surplus of unskilled labour and a shortage of skilled labour, particularly when the economy grows. In the short run the lack of skills can be alleviated through immigration but in the long run the quality of the South African labour force must be improved.

Capital Recall from the main text that capital as a factor of production refers to all man-made assets that are used in the production of goods and services. This includes things such as machines, plant, buildings, roads, bridges and dams – all things that are not wanted for their own sake but which are required to produce other goods and services. South Africa is a capital-poor country. Many capital goods, such as heavy or specialised machinery and equipment, cannot be manufactured locally on a profitable basis and therefore have to be imported. About 40 per cent of South African imports consist of capital goods. To pay for these goods, South Africa requires foreign exchange (eg dollars, pounds, yen and euro), which has often been in short supply and therefore very expensive. The large import component of capital has important implications for economic policy. When domestic demand expands, capital spending and imports increase, placing pressure on the exchange rate of the rand against other currencies (such as the US dollar and the euro). In the 1970s and 1980s the scarcity of capital in South Africa was exacerbated by an increase in the capital intensity of production. The capital intensity of production refers to the amount of capital required to produce each unit of output. The ratio between the country’s capital stock and its annual output is called the average capitaloutput ratio. An increased capital intensity of production is thus reflected in an increase in the capital-output ratio. Another indication of capital intensity is the average capital-labour ratio, which is the stock of capital per worker. Both the capital-output ratio and the capital-labour ratio were significantly higher in 2013 than in 1970. An increase in the capital intensity of production is a worrying trend. In a country where labour is plentiful and capital is scarce the appropriate trend would have been towards labour-intensive rather than capital-intensive production. An increase in capital intensity is, however, a complicated matter. For example, there are certain industries, like the chemical and engineering industries, which are capital intensive by nature. Even mining requires large capital outlays. South Africa also has to keep up with international technological developments in many industries to remain internationally competitive. A positive aspect of South Africa’s capital stock is its infrastructure, particularly if we compare it with the standards of other developing countries. South Africa has a relatively sound physical infrastructure, with wide-reaching road, rail and air links and a sophisticated communications network. In addition it also has a highly developed financial infrastructure.

Entrepreneurship As explained in the text, the entrepreneur is vital to economic growth and development. The entrepreneur is the person who identifies opportunities and combines the other factors of production. The entrepreneur is the one who develops new ideas (or puts them into practice), who develops new markets, who takes risks in the pursuit of profit and who creates employment and income. It is difficult to estimate South Africa’s endowment with entrepreneurship. It is arguably not particularly strong, but it has probably improved significantly since 1994. One of the reasons is that many whites who were in “sheltered” employment in the public sector resigned or were retrenched and decided to or had to use their often latent entrepreneurial skills to make a living. At the same time, black economic empowerment created new opportunities for budding black entrepreneurs. On balance it is therefore probably safe to state that South Africa’s endowment with entrepreneurship is neither particularly good nor particularly bad. An important limiting factor, however, is all the laws, rules, regulations and other administrative hassles that potential entrepreneurs have to cope with. 56

CHAP T E R 3 PRODUCTI ON, I NCOME A ND SPENDI NG I N THE MI XED E CON OM Y

IMPORTANT CONCEPTS

Production Income Spending Stock Flow Goods market Factor market Factors of production Natural resources (land) Labour Specialisation Division of labour Human capital Capital Consumption of fixed capital

Entrepreneurship Technology Money Capital-intensive production Labour-intensive production Rent Wages and salaries Interest Profit Household Consumer spending Firms Profit Captial formation (investment) Government

CH A P T ER 3 P R O D U C TION, INCOM E AND S PE NDING I N THE MI X ED ECONOMY

Public sector Government expenditure Taxes Transfer payments Foreign sector Balance of payments Imports Exports Circular flow Injection (addition) Leakage (withdrawal) Financial sector Absolute advantage Relative advantage Macroeconomic objectives

57

Some words of wisdom Many are the occasions on which I have participated in discussions about policies involving economic issues in which those participating have included economists of all shades of political opinion together with non-economists of all shades of political opinion. Almost whatever the subject of discussion, the outcome after a brief interval is predictable. The economists will be found aligned on one side of the subject – the free enterprisers along with the central planners, the Republicans along with the Democrats, libertarians and generally even socialists; the bulk of the group – academics, businessmen, lawyers, you name it, generally on the other. M I LTON F R I EDM A N (Foreword to Allen, WR. 1981. The midnight economist. Chicago: The Playboy Press, xiii-xiv)

To a well-trained economist [his way of looking at things] seems so natural and obvious that he is likely to dismiss it as trivial. One of the important things I have learned in twenty years of intimate contact with non-economists of all kinds – civil servants, engineers, scientists and politicians – is that it is not an obvious procedure to other people, and is therefore far from trivial. C HAR LE S H ITCH (Brookings Institution. 1961. Research for public policy. Washington, DC: Brookings Institution, 92–93)

The more I studied economic science, the smaller appeared the knowledge which I had of it, in proportion to the knowledge that I needed. A LF R E D MA R SHA LL (Quoted in James, S. 1984. A dictionary of economic quotations (2nd edition). London: Croom Helm, 56)

You don’t need to have a PhD in economics to realise that the government has made a mess of South Africa’s economy. T R E VOR M A N U EL (Sunday Times, 15 September 1991)

CHAP T E R 3 PRODUCTI ON, I NCOME A ND SPENDI NG I N THE MI XED E CON OM Y

4

Demand, supply and prices

Chapter overview 4.1 Demand and supply: an introductory overview 4.2 Demand 4.3 Supply 4.4 Market equilibrium 4.5 Consumer surplus and producer surplus Appendix 4-1: Algebraic analysis of demand and supply Important concepts

You can make even a parrot into a learned economist – all it has to learn are the words “supply” and “demand”. ANONYMOUS

We might as well reasonably dispute whether it is the upper or the under blade of the scissors that cuts a piece of paper, as whether value is governed by demand or supply. ALFRED MARSHALL

Learning outcomes Once you have studied this chapter you should be able to 䡲 䡲 䡲 䡲 䡲 䡲 䡲 䡲

identify the most important determinants of the quantity demanded show how demand can be expressed in words, numbers, graphs and equations explain the difference between demand and quantity demanded differentiate between a movement along a demand curve and a shift of a demand curve explain the determinants of the quantity supplied distinguish between a movement along a supply curve and a shift of a supply curve explain how the equilibrium price and quantity are determined distinguish between the consumer surplus and the producer surplus

Economics and economists are often associated with demand and supply. In 1872 Thomas Carlyle described economics as the science “which finds the secret of this Universe in ‘supply and demand’.” Although something of an exaggeration, demand and supply are indeed among the most important (and useful) tools in the economist’s toolkit. In Chapter 3 we introduced the circular flow of income and spending in the economy and showed where the goods market and the factor market fit into the overall picture. In this chapter, and in Chapters 5 to 11, we focus on the goods market, by analysing individual markets for goods and services. Figuratively speaking, we put the goods market under the microscope and examine the behaviour of households (as purchasers of consumer goods and services) and firms (as suppliers of these goods and services). The households are the driving force behind the demand for consumer goods and services, whereas the firms are the driving force behind the supply of goods and services. We start with a brief overview of supply and demand. We then explain an individual household’s demand for goods and ser vices. This is followed by an examination of market demand. We also explain the important distinction between a movement along a cur ve and a shift of a cur ve. This is followed by a similar analysis of an individual firm’s supply and market supply. Market demand and market supply are combined to obtain the equilibrium price and quantity of a product, and the concepts of consumer surplus and producer surplus are introduced. 59

The analysis of demand and supply is probably your first encounter with economic theory. We therefore proceed systematically and fairly slowly in this chapter. The study of demand and supply yields important results. It also illustrates the basic elements of systematic, clear thinking in economic theory. It is important to follow the method and the logic of each argument, since they establish the pattern for most of the reasoning in the rest of this book. If you master the way of thinking set out in this chapter, most of the other economic theories in this book should be fairly easy to follow. In fact, in many cases the same tools are used to analyse a variety of issues. We start with a brief overview of demand and supply.

4.1 Demand and supply: an introductory overview In Chapter 3 we explained how households and firms interact. Households own factors of production (natural resources, labour, capital and entrepreneurship). They sell these factors to firms in the factor markets and receive rent (natural resources), wages and salaries (labour), interest (capital) and profit (entrepreneurship). Firms combine these factors of production to produce goods and services that are sold in the goods markets to households who use the income (derived from selling their factors of production) to purchase the goods and services. In this and the next seven chapters (ie up to Chapter 11) we focus on the goods markets. In these markets, firms are the suppliers and households the consumers who demand the goods and services concerned. In a market economy, the prices and quantities traded in the goods markets are determined by the interaction of demand and supply. The links between households and firms are illustrated in Figure 4-1, which is an adaptation of the basic circular flow illustrated in Figure 3-3. Demand and supply are often likened to the two blades of a pair of scissors that interact to determine the equilibrium price and equilibrium quantity in the market. In the next two sections we take a closer look at demand (Section 4.2) and supply (Section 4.3). In other words, we examine each blade separately before putting them together again. FIGURE 4-1 The interaction between households and firms Goods market P D

S

P1

S 0

Supply goods and services (SS)

D Q1

Q

Demand goods and services (DD)

Natural resources, labour, capital and entrepreneurship sold to firms

FIRMS

Rent, wages and salaries, interest and profit paid to households HOUSEHOLDS

Households sell their factors of production to firms. Firms use these factors to produce goods and services that are sold in the goods markets to households who use their income to buy the goods and services. In the goods markets firms thus determine the supply (SS), while households determine the demand (DD). The interaction of supply and demand determines the price (P1) and quantity (Q 1) of each good or service.

60

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

4.2 Demand Demand flows from decisions about which wants to satisfy, given the available means. If you demand something (in the economic sense), it means that you intend to buy it and that you have the means (ie the purchasing power) to do so. In other words, when we talk about demand we are referring to the quantities of a good or ser vice that the potential buyers are willing and able to buy. Demand should not be confused with wants. Wants are the unlimited desires or wishes that people have for goods and services. How many times have you seen something you wanted, and thought, “if only I could afford it”? The basic fact of economic life is that only some of our wants can be satisfied. There are simply not enough means to satisfy them all. Demand is only effective if the consumer is able and willing to pay for the good or service concerned. You should also not confuse demand with needs or claims. We often hear or read that workers in a particular firm or industry “demand” or claim a certain increase in their wages. Such “demands” are requests (often supported by the threat of action) for certain wants or needs to be satisfied. Demand is a flow concept which is measured over a period (recall the distinction we made between stocks and flows in Section 3.1). We should always specify the period concerned (eg day, week, month or year). For example, if you demand three litres of milk at the usual price, your demand might be regarded as large, average or small, depending on whether it refers to a day, a week or a month. We should therefore always specify the time dimension, but it can be quite cumbersome to do so all the time. In the analysis which follows we do not always indi-cate the time dimension explicitly. We frequently refer simply to quantities rather than (more correctly) to quantities per period (day, week, month, quarter, year). We do this to keep the analysis as simple and uncluttered as possible. You should always remember, however, that concepts such as demand, supply, production, output, income and expenditure are all flow variables that are measured over a period rather than at a particular time. Demand refers to the quantities of a good or ser vice that prospective buyers are willing and able to purchase during a certain period. It relates to the plans of households, firms and other participants in the economy, not to events that have already occurred.1 The fact that demand is concerned with plans means that the quantity demanded may differ from the quantity actually bought. The quantity bought or exchanged will depend on the availability of the good or service in question. The quantity demanded may be less than, equal to or greater than the quantity actually bought. Like many economic concepts, demand can be expressed in words, schedules (or numbers), cur ves (or graphs) and equations (or symbols). In this chapter we use all four of these ways to examine the demand for goods and services. We deal only with the market for consumer goods and services, which we refer to simply as the goods market. Because we are dealing with microeconomics, we focus on the demand for particular goods and ser vices. We first examine the demand of an individual consumer or household for a particular good or ser vice, and then we look at the market demand. The total (or aggregate) demand for all goods and services in the economy is examined in macroeconomics.

Individual demand To illustrate the determinants and properties of individual demand, we consider the demand for tomatoes of an imaginary consumer, Anne Smith. Anne is a single parent with two school-going children. What determines the quantity of tomatoes that Anne plans to purchase in a particular period, say one week? t The price of the product. The lower the price of tomatoes, the larger the number of tomatoes Anne will be willing and able to buy, ceteris paribus. t The prices of related products. Anne’s decision about how many tomatoes to purchase will also depend on the prices of related products. Here we have to distinguish between complements and substitutes. Complements are goods that are used jointly. In the case of tomatoes, complements include bread (for tomato sandwiches), onions (for tomato salad or tomato and onion stew) and lettuce (for a salad). Substitutes are goods which can be used instead of the good in question. Tomatoes can be replaced by, for example, beans (in a stew) or avocados or other ingredients (in a salad). The relationship between the demand for a particular good and the prices of its complements and substitutes is examined more fully later. For the time being it is sufficient to note that the prices of related goods also affect Anne’s decision about how many tomatoes she plans to buy. t The income of the consumer. Anne’s plans will also be affected by her income, in this case her weekly income. Anne’s income determines her purchasing power, that is, her ability to purchase tomatoes. The higher her income, the more tomatoes she can afford (and plan) to buy. t The taste (or preference) of the consumer. Anne’s decision will also be influenced by her taste (as well as her children’s tastes). The more she likes tomatoes or dishes which require tomatoes as an ingredient, the more 1. Economists often use the Latin terms ex ante to refer to plans and ex post to refer to events that have already occurred. CH A P T ER 4 D E M A N D , S UPPLY AND PRICE S

61

tomatoes she will plan to buy. On the other hand, she might not like them or she may be under doctor’s orders not to eat them (because of their high acidity). All these non-measurable influences on consumers’ decisions are usually lumped together under “taste” (or “preference”). Taste can have a positive or a negative impact on the quantity demanded. t The size of the household. In our example Anne has two children. She will therefore tend to buy more tomatoes than a household consisting of one person, but fewer than a larger household. One of the things that does not determine Anne’s demand is the availability or supply of tomatoes. When asked to identify the factors which determine the quantities of goods demanded (ie the determinants of demand), many people instinctively put availability or supply at (or near) the top of their lists. The confusion probably arises because most people realise that tomatoes will be expensive when they are in short supply. Anne’s demand decision is, however, independent of the supply situation. She bases her plans on the information she has available. In particular, she considers the price of tomatoes without knowing or worrying about how the price is determined. If tomatoes are in short supply, the price will be high and Anne will take the higher price into consideration. Tomatoes may not be available in the market. When this happens, she will not be able to satisfy her demand for tomatoes, that is, she will not be able to purchase the quantity that she plans to buy. The availability of tomatoes can therefore affect the actual outcome in the market. Anne’s plans (ie her demand), however, are unaffected. This is a very important point. Much of economic theory is simply common sense, but it is structured, disciplined or logical common sense. To arrive at the correct conclusions, you must always consider very carefully what you are dealing with. You must always be careful not to confuse different issues (eg demand and supply decisions). We have now identified the most important determinants of Anne’s demand for tomatoes. We can state that the quantity of tomatoes demanded weekly by Anne Smith (ie the quantity that she plans to purchase every week) is determined by the price of tomatoes, the prices of related goods, her weekly income, her taste (including her children’s tastes) and the size of her household. More generally: The quantity of a good demanded by an individual (or household) in a particular period depends on (or is a function of) the price of the good, the prices of related goods, the income of the individual (or household), taste, the number of people in the household and any other possible influence. This is a verbal statement of the determinants of individual demand. Economic theory can be stated in words. But words are sometimes quite cumbersome. They can also become very confusing. We therefore often use symbols as a shortcut or shorthand method of expressing economic theories. Let Qd Px Pg Y T N …

=quantity of tomatoes demanded in a particular period =price of tomatoes =prices of related goods =household’s income during the period =taste of the consumer(s) concerned =number of people in household concerned =allowance for other possible influences

Given these symbols, we can express the individual’s demand for tomatoes as follows: Qd=f(Px, Pg, Y, T, N, …) ................................. (4-1) Equation 4-1 is simply a shorthand way of stating what we said earlier. Although much simpler than the long sentence used earlier, Equation 4-1 might seem quite complicated. It contains no fewer than six variables. One dependent variable (Qd) is expressed as a function of five independent variables (Px, Pg, Y, T, N). Although this is a useful starting point, we need to make things simpler. The whole purpose of theory is to understand things by reducing the details to the barest minimum. We must concentrate on the most important determinants. We do not ignore or abandon the other determinants – we simply focus on the ones that have the largest impact or which are crucial to the rest of our analysis, and we keep the remaining ones constant. The most important determinant of the quantity demanded of a particular good is probably its price. In terms of Equation 4-1, the focus is on the relationship between Qd and Px. This relationship is so important that it has been accorded the status of a “law”. The law of demand states: Other things being equal (ie ceteris paribus), the higher the price of a good, the lower is the quantity demanded. The relationship between quantity demanded and price can be illustrated in various ways. One possibility is to use a demand schedule. A demand schedule is a table which lists the quantities demanded at different prices when all other influences on planned purchases are held constant. Table 4-1 is an example of a demand schedule. In 62

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

Price of tomatoes (rand per kilogram)

the table we show the various quantities of tomatoes that TABLE 4-1 Anne Smith’s demand schedule for tomatoes Anne Smith plans to purchase weekly at different prices, Price of tomatoes Quantity demanded on the assumption that all the other determinants(Pg, Y, T, Possibility (R/kg) (kg per week) N) remain constant. For example, if the price is R1,00 per a 1 6 kilogram, she plans to purchase six kilograms per week. b 2 5 This is labelled possibility a. If the price is R4,00, she plans c 3 4 to purchase three kilograms per week (possibility d), and so d 4 3 on. e 5 2 The information in the demand schedule can also be illustrated graphically by drawing a demand cur ve. Figure 4-2 contains the demand curve that corresponds FIGURE 4-2 Anne Smith’s weekly demand for tomatoes to the information in Table 4-1. The points on the demand Px curve correspond to the different possibilities indicated in the demand schedule. (The fact that we join these points to form a continuous curve implies that other, intermediate prices and quantities, such as a price of R1,50 and a quantity of 5,5 kilograms, are also possible.) D Since this is the first graph in this part of the book, we e 5 examine it in detail to check whether you have mastered 4 d the art of drawing and reading graphs, as explained in c 3 Appendix 1-1. From now on we shall use graphs frequently. 2 b It is important, therefore, to ensure that you read the a 1 graphs correctly and that you can draw them. If you D Qd have any problems with Figure 4-2, first study Appendix 0 5 6 3 1 2 4 1-1 again. Graphs or diagrams are particularly useful for Quantity of tomatoes demanded expressing the essentials of economic theories. They are (kilograms per week) also quite simple to understand, provided you follow the basic rules for drawing and interpreting them. Each point indicates the quantity of tomatoes The basis of any diagram is the axes. In Figure 4-2 the demanded at that price. By joining the points we price of tomatoes (in rand per kilogram) is shown on the obtain the demand curve DD. The demand curve vertical axis, while the quantity of tomatoes demanded (in indicates the relationship between the quantity kilograms per week) is shown on the horizontal axis. Each of tomatoes demanded weekly and the price of point in the diagram represents a particular combination tomatoes, on the assumption that all other things of the price of tomatoes and the quantity demanded. For remain equal. example, point a shows that six kilograms of tomatoes will be demanded if the price is R1 per kilogram. Similarly, point b shows that five kilograms are demanded at a price of R2 per kilogram, and so on. By plotting all these points from the demand schedule and joining them we obtain a demand cur ve, DD, which slopes down from top left to bottom right. This indicates a negative or inverse relationship between the price and the quantity demanded. The higher the price, the smaller the quantity of tomatoes demanded. As we have already mentioned, this inverse (or negative) relationship between price and quantity demanded is called the law of demand. The demand curve is a simple and useful way of indicating the relationship between the quantity demanded and the price of a good or service, on the assumption that all other determinants are constant (ie ceteris paribus). Let us now return to Equation 4-1 which states that Qd=f(Px, Pg, Y, T, N, …) When we focus on the relationship between Qd and Px, as in the demand schedule of Table 4-1 and the demand curve of Figure 4-2, we are assuming that Pg, Y, T and N do not change. We do not ignore or abandon these (or any other) determinants of the quantity demanded. We simply assume that they do not change. To indicate this, we rewrite Equation 4-1 as Qd=f(Px, Pg, Y, T, N …)................................... (4-2) where the bars above Pg, Y, T and N indicate that these variables or determinants are held constant. Equation 4-2 is usually abbreviated to Qd=f(Px) ceteris paribus .................................. (4-3) which also indicates that all the other determinants are held constant (or assumed to be constant). (Remember

CH A P T ER 4 D E M A N D , S UPPLY AND PRICE S

63

that ceteris paribus is the Latin term for “all other things being equal”. It can be abbreviated as cet par.) No variable in economics can be explained by only one other variable. All economic relationships are similar to Equation 4-1. But since we always want to focus on the relationship between a dependent variable (which we want to explain) and a particular independent variable (or determinant), all relationships are expressed (and used) in the form indicated by Equations 4-2 and 4-3. In other words, we always use the ceteris paribus condition. To keep things simple, we do not always state this condition or assumption explicitly and we often simply write Qd = f(Px). You must remember, however, that such expressions are based on the assumption that all other things remain constant. As we proceed, we shall slip in a ceteris paribus now and then to remind you of this fact. Later in this chapter, we examine what happens if any of the other determinants do change. In the meantime, we recap on the various ways in which individual demand and the law of demand can be expressed: t Using words. Demand refers to the entire relationship between the quantity demanded and the price of a good or service, on the assumption that all other influences are held constant. The law of demand states that this is an inverse or negative relationship. The higher the price of the good, the lower the quantity demanded, ceteris paribus. t Using numbers: the demand schedule. The demand schedule is a table which shows the quantities of a good demanded at each possible price, ceteris paribus. Table 4-1 is an example of a demand schedule. The figures in the table indicate that the quantity demanded decreases as the price increases. The entire demand schedule in Table 4-1 represents Anne Smith’s demand for tomatoes. t Using graphs: the demand cur ve. The demand curve is a line which indicates the quantity demanded of a good at each price, ceteris paribus. Figure 4-2 contains an example of a demand curve. The negative slope of the curve clearly indicates that the quantity demanded increases as the price decreases. This is a visual representation of demand. The entire demand cur ve in Figure 4-2 represents Anne Smith’s demand for tomatoes. t Using symbols: the demand equation. The demand equation is a shorthand way of expressing the relationship between the quantity of a good demanded and its price, ceteris paribus. Equations 4-2 and 4-3 are both demand equations: Qd=f(Px, Pg, Y, T, N, …) ............................... (4-2) Qd=f(Px) ceteris paribus ................................ (4-3) These equations (which are actually two ways of expressing the same thing) are often reduced to Qd = f(Px), since the ceteris paribus assumption is usually taken for granted in economics. The equations above both represent Anne Smith’s demand for tomatoes. They do not explicitly indicate the fact that there is an inverse relationship between quantity demanded and price. To do this, we have to formulate a more precise equation. This is done in Appendix 4-1, where demand and supply are analysed algebraically.

Market demand The individual demand curve is one of the most important building blocks of microeconomic theory. But firms are interested in the total (or market) demand for the goods and services that they supply, rather than in the demand of a particular individual or household. In a market system the plans of all the consumers and producers of a good or service have to be taken into account. To move from individual demand to market demand is quite straightforward. Market demand is simply the sum of all the individual demands in the particular market. Suppose there are only three prospective buyers of tomatoes in a particular market: Anne Smith, Helen Rantho and Purvi Bhana. To obtain the market demand schedule, the three individual demand schedules are simply added together. This is shown in Table 4-2, where the market demand is obtained by adding the individual quantities demanded horizontally at each price. Similarly, the market demand cur ve can be obtained by adding the individual demand curves horizontally (ie at each price). This is shown in Figure 4-3 which shows the individual demand curves of Anne (A), Helen (H) and Purvi (P) and the market demand curve (DD). The market demand curve can, of course, also be obtained by plotting the market demand schedule (ie by plotting the quantities in the last column of Table 4-2 against the relevant prices in the first column). The market demand curve shows the relationship between the price of tomatoes and the quantity demanded in the market (by all the consumers) during a particular period (in this case a week), again on the assumption that all other factors remain unchanged. Like the individual demand curve, the market demand curve also slopes downwards from left to right. In other words, it also shows an inverse or negative relationship between the price of tomatoes and the quantity demanded, ceteris paribus. What determines the quantity of tomatoes demanded in the market at each price? Since market demand is derived 64

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

TABLE 4-2 Deriving the market demand schedule from individual demand schedules Kilograms of tomatoes demanded weekly by

Price of tomatoes (R/kg)

Anne

Helen

Purvi

Total quantity demanded per week (kg)

6 5 4 3 2

4 3 2 1 0

5 4 3 2 1

15 12 19 16 13

1 2 3 4 5

from individual demand, it follows that the same factors which determine the individual quantities demanded also determine the total quantities demanded in the market. In symbols we can therefore write Qd=f(Px, Pg, Y, T, N, …) ................................. (4-4) where

Qd =quantity of tomatoes demanded in the market Px =price of tomatoes Pg =prices of related goods Y

=total income of all prospective purchasers of tomatoes

T

=tastes of all prospective purchasers of tomatoes

N

=total number of potential consumers of tomatoes (ie the total population in the market area concerned)

… =allowance for any other possible influences on the quantity of tomatoes demanded in the market The market demand curve has the same characteristics as the individual demand curve. The only difference, of course, is that we are now dealing with all the prospective buyers of tomatoes in a particular market, not just one. The total income of all the prospective buyers, the tastes of all of them and the total number of people served by the market therefore have to be taken into account. We also explicitly provide for other factors which may influence the demand for tomatoes. These include things like expected future prices and the quality of the tomatoes. The algebraic formula for market demand is given in Appendix 4-1. Having derived the market demand curve, we now turn to the important distinction between movements along the demand curve and shifts of the curve.

Movements along the demand curve and shifts of the curve From now on we often use diagrams to explain things. These diagrams all contain curves which represent important economic relationships, like the demand curve in Figure 4-3(b). To understand and interpret the diagrams you FIGURE 4-3 The market demand curve (a)

(b)

5

Px

D

HPA Price of tomatoes (rand per kg)

Price of tomatoes (rand per kg)

Px

4 3 2 1 0

Qd 12 3 4 5 6

Quantity of tomatoes (kg) per week

5 4 3 2 1 0

D Qd 3

6

9

12

15

Quantity of tomatoes (kg) per week

The market demand curve is obtained by adding the individual demand curves horizontally. In (a) Anne’s demand curve is labelled A, Helen’s H and Purvi’s P. In (b) these three demand curves have been added to obtain a market demand curve DD.

CH A P T ER 4 D E M A N D , S UPPLY AND PRICE S

65

have to understand the difference between a movement along a curve and the shift of a curve. This is crucial for understanding economic theory. Because this is so important, we explain it in detail in this section. You will notice that the movement along a curve relates to the slope of the curve, while the shift of a curve relates to its position or intercept. Make sure that you are able to distinguish between the meaning of a movement along a curve and the meaning of a shift of a curve. If you understand this, you will find much of economic theory fairly easy.

A movement along a demand curve (a change in the quantity demanded)

FIGURE 4-4 A movement along a demand curve Px

Price of tomatoes (rand per kg)

Consider the market demand curve DD in Figure 4-4. What does it show? The market demand curve simply shows the quantities demanded at different prices of the good or service. For example, D e the demand curve DD in Figure 4-4 (which is the same as DD in 5 Figure 4-3(b)) shows that 15 kg of tomatoes will be demanded d 4 weekly at a price of R1,00; 12 kg at a price of R2,00; and so on. c 3 What will happen to the quantity demanded if the price of b 2 tomatoes falls from R4,00 to R3,00 per kg? To find the answer, we a first determine how many kilograms are demanded at a price of 1 D R4,00. From Figure 4-4 we see that the answer is 6 (point d). Then Qd 0 we determine how many kilograms of tomatoes are demanded 3 6 9 12 15 at a price of R3,00. This is indicated by point c. The answer to Quantity of tomatoes (kg per week) the question can thus be obtained by comparing points d and c. This shows that the weekly quantity of tomatoes demanded will Demand curve DD is the same as the demand increase from 6 kg to 9 kg, if the price of tomatoes falls from R4,00 curve in Figure 4-3(b). Points a to e correspond per kg to R3,00 per kg. Correct? Not quite. To be fully accurate to the figures in the first and last columns of Table we have to add the ceteris paribus condition. In other words, the 4-2. A fall in the price of tomatoes from R4,00 per kg to R3,00 per kg increases the quantity result will hold only if all other factors remain the same. demanded from 6 kg to 9 kg. This is represented If the price of the product changes, we obtain the change by a movement along the demand curve (as the in the quantity demanded by comparing the relevant points on price changes). the fixed, given or unchanged demand curve, that is, by moving along the cur ve. This is how we determine a change in the quantity demanded. The market demand curve shows the relationship between the price of the product (Px) and the quantity demanded (Qd), ceteris paribus. To find out what happens to Qd if Px changes, we simply compare the relevant points on the given demand cur ve, since the demand curve shows the relationship between price and quantity demanded, on the assumption that all other influences on demand are constant. This relationship can also be expressed in symbols as in Equation 4-5: Qd=f(Px, Pg, Y, T, N, …)................................ (4-5) where the symbols have the same meanings as before and the bars indicate which determinants are assumed to be constant. But what happens to the relationship between Qd and Px if Pg, Y, T, N or any other influence on demand should change? Graphically this is indicated by a shift of the demand curve.

A shift of the demand curve (a change in demand) What are the factors that can cause a change in demand, that is, a shift of the demand cur ve? A change in any of the determinants of demand other than the price of the product will shift the demand curve. Because we have elevated the price of the product to centre stage by measuring it on the ver tical axis, changes in the other determinants of demand are reflected only as shifts of the curve itself. When this happens, we describe it as a change in demand. The difference between a change in the quantity demanded (illustrated by a movement along a given demand curve) and a change in demand (illustrated by a shift of the whole demand curve) is summarised again later (in Figure 4-7). We now examine changes in the other determinants of demand, which cause the demand cur ve to shift. 䡲 A CHANGE IN THE PRICE OF A RELATED GOOD

The quantity of tomatoes that consumers or households plan to buy does not depend only on the price of tomatoes. It also depends on the prices of related goods. As mentioned earlier, these related goods fall into two categories: substitutes and complements.

66

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

Substitutes A substitute is a good that can be used in place of another good to satisfy a certain want. Examples include butter and margarine, beef and mutton, tea and coffee, apples and pears, bus trips and train trips, hamburgers and hot dogs. An increase in the price of a substitute will cause an increase in the demand for the product in question, ceteris paribus. To illustrate the point, we examine an example of two goods that are generally accepted as being substitutes, namely butter and margarine. An increase in the price of butter will increase the demand for margarine, ceteris paribus. If the price of butter increases, a greater quantity of margarine will be demanded at each price of margarine than before. If the price of butter increases, the demand curve for margarine will therefore shift to the right. This is called an increase in demand. This is shown in Figure 4-5, which depicts the market for margarine. The original demand for margarine is illustrated by DmDm. If the price of butter increases, more margarine will be demanded at each price of margarine than before. This is illustrated by a rightward shift of the demand curve for margarine to D'mD'm. An increase in the price of a substitute (butter) will thus lead to a rightward shift of the demand cur ve for the product concerned (margarine). Similarly, a decrease in the price of a substitute will lead to a decrease in the demand for the good concerned, illustrated by a leftward shift of the demand curve. If the price of butter should fall, fewer kilograms of margarine will be demanded than before at each price of margarine, ceteris paribus. The demand for margarine will therefore decrease. Complements Complements are goods that tend to be used jointly to satisfy a want. Examples include fish and chips, “pap en vleis”, motorcars and petrol, coffee and milk, tea and sugar, spaghetti and meatballs, golf clubs and golf balls, compact discs (CDs) and CD players, tomatoes and onions, tomatoes and lettuce. If the price of the complement of a good changes as a result of a change in supply, the demand for the good will also change. For example, the fact that compact discs are used with CD players means that a change in the price of CD players will affect the demand for CDs. This is illustrated in Figure 4-6, which shows the market for CDs. The original demand for CDs is illustrated by DcDc. If the price of CD players decreases, more CD players will be demanded than before and more CDs will also be demanded than before (at each price of CDs). The increase in the demand for CDs is illustrated by a rightward shift of the demand curve to D'cD'c. A decrease in the price of a complementary product (CD players) increases the demand for the product concerned (CDs) and this is illustrated by a rightward shift of the demand curve. Similarly, an increase in the price of the complement (CD players) as a result of a change in supply will lead to a decrease in the demand for the product (CDs). In this case the demand curve for CDs will shift to the left. FIGURE 4-5 Two substitutes: butter and margarine

FIGURE 4-6 Two complements: CD players and CDs

Pm

Dc

rice o

Dm 0

Dc

Ds

Dm

rice o mar arine

Dm

Pc

Dc

Dm

Qm

uan i y o

Dc Qc

Ds

uan i y o mar arine

The original demand curve for margarine is DmDm. If the price of butter increases, the demand for margarine increases. At each price of margarine more margarine is demanded than before. This is illustrated by a rightward shift of the demand curve to D'mD'm.

CH A P T ER 4 D E M A N D , S UPPLY AND PRICE S

The original demand curve for CDs is DcDc. If the price of CD players falls as a result of an increase in supply, more CD players will be bought and the demand for CDs will rise. At each price of CDs, more CDs are demanded than before. This is illustrated by a rightward shift of the demand curve to D'cD'c.

67

䡲 A CHANGE IN THE INCOME OF CONSUMERS

A change in consumer income will lead to a change in demand. Graphically this is illustrated by a shift of the demand curve. An increase in income will normally lead to an increase in demand, while a fall in income will result in a decrease in demand. The demand cur ve will thus shift to the right when income increases and to the left when income decreases. When this happens, the good is called a normal good. In some exceptional cases, demand decreases when income increases. When this happens, the goods in question are called inferior goods. Poor consumers may, for example, reduce their consumption of bread when their income increases. This will happen when the increase in income enables them to switch to other, more expensive, foodstuffs such as meat. Note that the adjective “inferior” does not refer to any physical attribute of the good concerned. It merely indicates that demand increases as income decreases, or decreases as income increases. 䡲 A CHANGE IN CONSUMERS’ TASTES OR PREFERENCES

When consumers’ tastes or preferences change, demand changes. For example, if doctors discovered that the acidity of tomatoes can cause serious health problems, the demand for tomatoes would fall. In other words, the demand curve would shift to the left, ceteris paribus. Similarly, if doctors discovered that tomatoes contain substances that are good for one’s health, demand would increase, that is, the demand curve would shift to the right, ceteris paribus. Advertising and fashion can also change consumers’ tastes or preferences. Any change in taste or preference will be illustrated by a shift of the demand curve. 䡲 A CHANGE IN POPULATION

Demand also depends on the size of the population served by the market in question. Other things being equal, the larger the population, the greater will be the demand for the product, and the smaller the population, the smaller will be the demand for the product. An increase in the population will thus shift the demand curve to the right, ceteris paribus. 䡲 OTHER INFLUENCES ON DEMAND

A change in expected future prices One important influence on economic decisions which we have not yet introduced is expectations. A change in consumers’ expectations in respect of any of the determinants of the quantity demanded can cause a change in demand. For example, expected price changes can cause a change in current demand. If the price of a good is expected to fall, ceteris paribus, consumers will tend to reduce their current demand, preferring to wait and buy more later at a lower price. Similarly, expected price increases can cause an increase in demand, ceteris paribus. Sometimes price increases are announced in advance, for example the monthly adjustment in petrol prices. If a price increase is announced, the demand for petrol rises sharply before the actual price increase. Likewise, if a price decrease is announced, consumers will tend to delay their purchase until after the price decrease comes into effect. The ceteris paribus condition is extremely important in this case. During inflation all prices tend to increase. What we are dealing with here, however, is an expected increase in the price of one good only. Put differently, we are dealing with a situation in which the relative price of the good is expected to change, not only the absolute price (see Box 4-1). The distribution of income Demand may also change if a constant total income is redistributed among the different households in the economy. For example, if income is redistributed from high-income households to low-income households, the demand for goods bought mostly by low-income households will increase, while the demand for goods purchased mostly by high-income families will decrease, ceteris paribus. The distribution of income is an important determinant of the composition or structure of demand in a market economy, since only money votes count in the market.

Demand: a summary The impact of the most important influences on demand and the quantity demanded is summarised in Table 4-3 and Figure 4-7. The impact of a change in the price of a good on the quantity demanded of that good can also be separated into a substitution effect and an income effect – see Box 4-2. We have taken quite some time to explain demand. In the process we emphasised certain important principles and aspects of economic analysis which you will encounter time and again in the rest of this book. Now that we have emphasised these principles and aspects, we can proceed a little faster with the analysis of supply. 68

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

BOX 4-1 THE IMPORTANCE OF RELATIVE PRICES Prices play a key role in a market economy. When dealing with prices it is important, however, to distinguish between absolute prices and relative prices. An absolute price is the actual price in the market at any particular time, for example a loaf of bread costs R10,00 or a kilogram of meat costs R60,00. Absolute prices contain important information, but the key role of prices does not lie in what each individual product costs, but what each product costs in terms of other products, or relative to what one earns. In our example a kilogram of meat costs six times as much as a loaf of bread. This is a relative price. If the price of bread increases to R12,00 per loaf, while the price of meat remains the same, the absolute price of meat is unchanged, but meat has become relatively cheaper – a kilogram of meat is now only five times as expensive as a loaf of bread. Relative prices, not absolute prices, are important in the allocation of goods, services and factors of production. The law of demand states that the quantity demanded of a good decreases when its price rises and increases when its price falls, ceteris paribus. The effects of price changes are illustrated by movements along the demand curve. All these conclusions depend on the ceteris paribus condition, that is, they only apply if all other influences on the quantity demanded are held constant. Note that the ceteris paribus condition has an important implication regarding the meaning of the price of the good (shown on the vertical axis when we construct a demand curve). If all other factors are kept constant, a fall in the price of the good does not only mean that the absolute price (in rand and cents) falls – it also means that the relative price (ie the ratio between the price and the prices of other goods) falls. The good therefore becomes absolutely and relatively cheaper than before. In other words, all other goods become relatively more expensive in comparison with that good. The relative prices are the signals which govern the allocation of resources. If all prices change in the same proportion (eg if all prices and incomes increase by 10 per cent during inflation), the plans of households and firms will be unaffected and the allocation of resources will remain unchanged. But if a good becomes relatively cheaper or relatively more expensive, the plans of the various participants in the economy will be affected. To summarise: for a given demand curve the price on the vertical axis indicates both the absolute and the relative price of the good in question. A movement along the demand curve indicates that both the absolute price and the relative price have changed. Changes in relative prices are the driving force in the market mechanism.

FIGURE 4-7 A change in the quantity demanded versus a change in demand D2

P D D1

b

Price

a c D2 D D1 Qd

When the price of a good changes, there is a movement along the demand curve and a change in the quantity demanded. Along demand curve DD a movement from a to b indicates a decrease in the quantity demanded, while a movement from a to c shows an increase in the quantity demanded. If one of the other influences on demand changes, there is a change in demand which is represented by a shift of the demand curve. An increase in demand is represented by a rightward shift of the demand curve, such as the shift from DD to D2D2. A decrease in demand is represented by a leftward shift of the demand curve, such as the shift from DD to D1D1.

Quantity demanded

4.3 Supply Supply can be defined as the quantities of a good or ser vice that producers plan to sell at each possible price during a certain period. As in the case of demand, supply refers to planned quantities – the quantities that producers or sellers plan to sell at each price. Just as consumers must be able to carry out their plans, producers must be willing and able to supply the quantities concerned. There is also no guarantee that the quantity supplied

CH A P T ER 4 D E M A N D , S UPPLY AND PRICE S

69

TABLE 4-3 The market demand curve: a summary Effect on market demand curve

Correct description of effect

Upward movement along the demand curve Downward movement along the demand curve

A fall in the quantity demanded An increase in the quantity demanded

Increase Decrease Increase Decrease

Rightward shift of the demand curve Leftward shift of the demand curve Leftward shift of the demand curve Rightward shift of the demand curve

An increase in demand A fall in demand A fall in demand An increase in demand

Income (normal good)

Increase Decrease

Rightward shift of the demand curve Leftward shift of the demand curve

An increase in demand A fall in demand

Taste/preferences

An increased desire to buy A reduced desire to buy

Rightward shift of the demand curve Leftward shift of the demand curve

An increase in demand A fall in demand

Population

Increase Decrease

Rightward shift of the demand curve Leftward shift of the demand curve

An increase in demand A fall in demand

Expected future price of the good

Price is expected to increase Price is expected to fall

Rightward shift of the demand curve

An increase in demand

Leftward shift of the demand curve

A fall in demand

Determinant

Change

Price of the good

Increase Decrease

Prices of related goods – Substitutes – Complements2

will actually be sold. The quantity actually sold or exchanged will depend, amongst other things, on the demand for the good or service in question. The quantity supplied during a specific period may therefore be greater than, equal to or smaller than the quantity actually sold or exchanged. Like demand, supply is a flow concept which is measured over a period of time (hour, day, week, month, etc). It can also be expressed in words, schedules (numbers), curves (graphs) or equations (symbols). As we have mentioned, we deal only with the goods market in this chapter. We do not investigate the supply of factors of production such as labour. As in the case of demand, we first examine the supply of an individual producer, seller or firm before we look at the market supply. We again focus on the supply of a particular good. The total (or aggregate) supply of all goods and services in the economy is a macroeconomic issue.

Individual supply As stated above, supply refers to the quantities of a good or service that prospective sellers plan to sell at various prices. To illustrate the determinants and properties of individual supply, we consider the supply of tomatoes of an imaginary farmer, Johnny Ramos. Johnny is a vegetable farmer in Gauteng who sells his produce on the Pretoria fresh produce market. What determines Johnny’s supply of tomatoes in a particular year? t The price of tomatoes. The higher the price of tomatoes, the greater the quantity that Johnny will plan to grow and sell, ceteris paribus. t The prices of alternative products. Johnny’s decision about how many tomatoes to produce will also depend on the prices of alternative products (outputs). As a vegetable farmer, he must decide which vegetables to grow, and how much of each. If the price of cauliflower increases, relative to the price of tomatoes, he might plan to produce more cauliflower and fewer tomatoes. Likewise, if the price of cabbages falls, relative to the price of tomatoes, he might plan to produce fewer cabbages and more tomatoes. Producers will always consider the prices of alternative outputs that they can produce with the same resources. These outputs are sometimes referred to as substitutes in production. t Prices of factors of production and other inputs. The quantities of tomatoes that Johnny plans to sell at different prices will also depend on the cost of production. To make a profit, he has to cover his costs of production. If the prices of one or more of his inputs (eg labour, fertiliser, machinery) increase, a smaller quantity 2. We assume that the price of the complement changes because of a change in supply.

70

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

BOX 4-2 THE SUBSTITUTION EFFECT AND THE INCOME EFFECT OF A PRICE CHANGE As mentioned in Box 4-1, relative prices are the key to understanding the inverse relationship between price and quantity demanded (ie the law of demand). We can distinguish two fundamental reasons for the law of demand: the substitution effect and the income effect. If the price of tomatoes falls while the prices of all other goods and services remain constant, tomatoes become relatively cheaper (and all the other things relatively more expensive). This will result in a shift in spending away from the goods which have become relatively more expensive towards the goods which are now relatively cheaper. This shift is called the substitution effect. Consumers will plan to substitute the cheaper tomatoes for the more expensive beans, sprouts, etc. The substitution effect is always towards the goods which have become relatively cheaper (or away from the goods which become relatively more expensive). The substitution effect is not the only effect that is at work. If the price of a good changes, while a household’s income and the prices of all other goods remain the same, the actual value or effective purchasing power of the household’s income changes. The purchasing power of income is called real income. When prices change, real income changes, even if money income remains the same. If the price of tomatoes increases, real income decreases, ceteris paribus. Similarly, if the price of tomatoes decreases while all other things remain the same, the household’s real income increases. If a consumer’s real income increases, he or she will plan to buy more tomatoes, ceteris paribus. Likewise, if a consumer’s real income falls, he or she will plan to buy fewer tomatoes. We call this the income effect. In the case of a normal good the income effect works in the same direction as the substitution effect. We can summarise the two effects as follows: Change in the price of the good (ceteris paribus)

Type of effect

How it works

Impact on quantity demanded

Price increases

Substitution effect

Good becomes relatively more expensive as a result of higher price Real income falls as a result of higher price

Quantity demanded decreases

Income effect Price decreases

Quantity demanded decreases

Substitution effect

Good becomes relatively cheaper as a result of lower price

Quantity demanded increases

Income effect

Real income increases as a result of lower price

Quantity demanded increases

The income effect of a change in the price of a single product is usually quite small. Such a change will normally have an almost imperceptible impact on the purchasing power of a consumer or group of consumers and on the demand for the product. The substitution effect is therefore usually more important. There may be exceptions but they are comparatively rare and tend to apply to individual demand rather than market demand.

of tomatoes will be supplied by Johnny at each price than before, ceteris paribus. The reason, of course, is that it will cost more to produce each quantity. t Expected future prices. Whereas consumers can make decisions fairly quickly, producers often have to plan long in advance. Johnny will therefore not only be influenced by what is happening at present, but also by what he expects to happen in future when his tomatoes reach the market. For example, the higher he expects the future price of tomatoes to be, ceteris paribus, the more tomatoes he will plan to produce. In the case of nonperishable crops, like wheat or maize, farmers may even withhold some of their produce from the market in anticipation of a price increase. In other words, they may postpone their supply to a future period. t The state of technology. New technologies (or production techniques) that enable producers to produce at lower costs will increase the quantity supplied at each price. For example, the introduction of new fertilisers or a new tomato which is less susceptible to plant disease will tend to increase the supply of tomatoes, ceteris paribus.

CH A P T ER 4 D E M A N D , S UPPLY AND PRICE S

71

Supply decisions must not be confused with demand decisions or with actual outcomes in the market. As mentioned earlier, much of economic theory is simply structured common sense. But you must argue in a disciplined fashion by always considering carefully the question you are dealing with and taking care to avoid confusing supply decisions with demand decisions. So, in deciding what quantities of tomatoes to supply, Johnny considers the price of tomatoes. This price is affected by the demand for tomatoes, but he does not worry about how the price is determined. He wants to make a profit by selling tomatoes at prices that more than cover the costs of his inputs. He has no guarantee, however, that he will be able to sell all the tomatoes he plans to produce at each price. For example, when the market price is lower than the price he expected, he may have to sell some tomatoes at a loss, or even destroy them. We have now identified the most important determinants of Johnny’s supply of tomatoes. We can state that the quantity of tomatoes supplied annually by Johnny (ie the quantity that he plans to produce each year) is determined by the price of tomatoes, the prices of related commodities, the prices of his inputs, the expected future prices of tomatoes and the state of technology. More generally: The quantity of a good supplied by an individual producer (seller, firm) in a par ticular period is a function of the price of the good, the prices of alternative outputs, the prices of the factors of production, the expected future prices of the good and the state of technology. This is a verbal statement of the determinants of individual supply. Supply can also be expressed in a shorthand way by using symbols. Let Q s Px Pg Pf Pe Ty ...

=quantity of tomatoes supplied =price of tomatoes =prices of alternative outputs =prices of factors of production and other inputs =expected future prices of tomatoes =technology =allowance for other possible influences

The individual supply of tomatoes can then be expressed as Q s=f(Px, Pg, Pf, Pe, Ty, ...) ............................. (4-6) As in the case of demand, we focus primarily on the relationship between the quantity supplied and the price of the good. We therefore state that: Q s=f(Px, Pg, Pf, Pe, Ty, ...) ...................... (4-7) or Q s=f(Px) ceteris paribus ........................ (4-8) where the bars indicate that the relevant variables are kept TABLE 4-4 Johnny’s supply schedule of tomatoes constant. Price of tomatoes Quantity supplied We can also construct a supply schedule. Table 4-4 is an Possibility (R/kg) (kg per year) example of such a schedule. It shows the various quantities a 1 500 of tomatoes which Johnny will supply at various prices during b 2 1 000 a particular year. In contrast to the quantity demanded, the c 3 1 500 quantity supplied increases as the price of the product increases. d 4 2 000 The information in the supply schedule can be illustrated e 5 2 500 graphically by drawing a supply cur ve. Once again we accord priority status to price above all other determinants of the quantity supplied by indicating it on the vertical axis. Figure 4-8 contains the supply curve that corresponds with the information in Table 4-4. It has a positive slope, indicating that the quantity supplied increases as the price increases. The points on the supply curve correspond to the different possibilities indicated in the table. The fact that we join the points to draw a supply curve implies that there are also other, intermediate possibilities (eg a price of R1,50 per kg and a quantity supplied of 750 kg). Supply curves are not necessarily linear (as in Figure 4-8) but to keep things simple we assume (for the moment) that all supply curves can be represented by straight lines.

72

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

t Using words. Supply refers to the entire relationship between the quantity supplied of a commodity and the price of that commodity, other things being equal. The law of supply states that this is usually a positive (or direct) relationship. The higher the price of the good, the greater the quantity supplied; and the lower the price of the good, the lower the quantity supplied, ceteris paribus. t Using numbers: the supply schedule. The supply schedule is a table which shows the quantity of a good supplied at each price, ceteris paribus. Table 4-4 is an example of a supply schedule. The figures in Table 4-4 indicate that the quantity supplied increases as the price increases. The entire supply schedule in Table 4-4 represents Johnny’s supply of tomatoes. t Using graphs: the supply cur ve. The supply curve is a line or graph which indicates the quantity supplied of a good at each price, ceteris paribus. Figure 4-8 contains an example of a supply curve. The slope of the curve shows that the quantity supplied increases as the price increases. This is a visual representation of supply. The entire cur ve in Figure 4-8 represents Johnny’s supply of tomatoes.

FIGURE 4-8 Johnny’s annual supply of tomatoes Px e

5

Price of tomatoes (R/kg)

Make sure that you understand what the supply curve indicates. If you have problems in interpreting it, revise the more detailed explanation of the demand curve in Section 4.2 and the explanation of graphs in Appendix 1-1. To recap: supply can be expressed in four ways:

S

d

4 c

3 b

2 a

1 S 0

Qs 500 1000 1500 2000 2500 Quantity of tomatoes supplied (kg)

Each point indicates the quantity of tomatoes supplied at that price. By joining the points we obtain a supply curve SS. The supply curve indicates the relationship between the quantity of tomatoes supplied annually and the price of tomatoes, on the assumption that all other things remain unchanged.

t Using symbols: the supply equation. The supply equation is a shorthand way of expressing the relationship between the quantity supplied of a good and its price, ceteris paribus. Equations 4-7 and 4-8 are both supply equations: Qs=f(Px, Pg, Pf, Pe, Ty, ...) ................................ (4-7) Qs=f(Px) ceteris paribus.................................. (4-8) These two equations are often reduced to Qs = f(Px), since the ceteris paribus assumption is usually taken for granted in economics. Note that an entire equation represents the supply of the product. A more precise equation of the supply curve is formulated in Appendix 4-1, in which demand and supply are analysed algebraically.

Market supply To move from individual supply to market supply, the individual supplies are added together horizontally. The market supply curve is obtained in the same way as the market demand (see Table 4-2 and Figure 4-3) – except that we now add the individual supply curves. The market supply curve shows the relationship between the price of the product and the quantities supplied (by all the firms) during a particular period. Like the individual supply curve, the market supply curve also slopes upwards from left to right. In other words, there is a direct or positive relationship between price and quantity supplied. What determines the quantity of a good supplied in the market at each price? The same factors that determine the individual quantities supplied also determine the total quantities supplied in the market. In symbols we can write Qs=f(Px, Pg, Pf, Pe, Ty, N, …)......................... (4-9) where

Qs Px Pg Pf Pe Ty N …

=quantity supplied in the market =price of the product =prices of alternative outputs =prices of factors of production and other inputs =expected future prices of the product =technology =number of firms supplying the product =allowance for other possible influences on the quantity supplied

CH A P T ER 4 D E M A N D , S UPPLY AND PRICE S

73

In principle the market supply curve is the same as the individual supply curve. The only real difference is that the market supply pertains to all the prospective sellers of the product in a particular market. The total number of firms (N) supplying the product therefore has to be taken into account. In addition we allow explicitly for all the other factors which may influence the supply of the product. These other possible determinants include the following: t Government policy. Subsidies on particular goods or services tend to raise their supply, while taxes tend to reduce supply. t Natural disasters. Floods, earthquakes and droughts have an impact on supply. In South Africa we are familiar with the devastating impact of severe droughts or flooding. t Joint products and by-products. Some products are produced jointly (eg sugar and molasses, wheat and bran, lead and zinc, beef and leather) with the result that a change in the supply of the major product results in a similar change in the supply of the by-product. Joint products are sometimes called complements in production. t Productivity. This is related to, amongst other things, technology. A change in the productivity of the factors of production (eg as a result of improved technology) will lead to a change in supply. If productivity falls, production costs increase, ceteris paribus, and supply decreases. The relationship between productivity and supply is examined in Chapter 9. Some of the determinants of supply are interdependent. For example, if the relative price of a product is expected to increase, the number of firms supplying the market will tend to increase. Now that we have introduced the market supply curve, we turn to the important distinction between movements along the supply curve and shifts of the curve. In dealing with the demand curve, we discussed this distinction quite extensively. Since the principles are the same, we shall be fairly brief.

Movements along the supply curve and shifts of the curve

Price of the product

The supply curve in Figure 4-9 shows the relationship between FIGURE 4-9 A movement along a supply curve: the price of the product and the quantity supplied, ceteris a change in the quantity supplied paribus. At a price of P1 the quantity supplied is Q1, as indicated P by combination a in the figure. If the price increases to P2, the quantity supplied will increase to Q2, as indicated by combination b in the figure. The supply curve shows that the quantity supplied S will increase if the price increases, ceteris paribus. If we want to know what will happen if the price of the product changes, we P2 b simply move along the cur ve. Such a movement represents a change in the quantity supplied. P1 a However, if one of the other determinants of the quantity supplied changes, then the whole supply relationship changes. Graphically this is indicated by a shift of the supply curve. Whereas a movement along a supply cur ve (as a result S of a change in the price of the product, which we measure on the vertical axis) is referred to as a change in the quantity Qs 0 supplied, a shift of the supply cur ve (as a result of a change Q1 Q2 in any factor other than the price of the product) is called a Quantity supplied per period change in supply. The two possible changes in supply are indicated in Figure 4-10. Any factor which leads to an increase A change in the price of the product leads to a in supply (ie an increase in the quantity supplied at each price movement along the supply curve SS. For example, of the product) will shift a supply curve such as SS in Figure when the price of the product increases from P1 to P2 4-10, to S2S2. On the other hand, any factor which results in a the quantity supplied increases from Q1 to Q2. In other decrease in supply (ie a fall in the quantity supplied at each price words, there is a movement along SS from a to b. of the product) will shift a supply curve such as SS in Figure 4-10 upwards, to the left, to S1S1. A change in any determinant of the quantity supplied except the price of the product will be illustrated by a shift of the supply curve. The impacts of the most important determinants of supply are summarised in Table 4-5. The derivation of a supply curve is explained in Chapter 9. The supply curve mainly reflects the cost of producing the product concerned. In Chapter 9 we show how costs of production are related to the prices of the inputs used in the production process and their productivity.

74

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

TABLE 4-5 The market supply curve: a summary Effect on market supply curve

Correct description of effect

Increase

Upward movement along the supply curve

An increase in the quantity supplied

Decrease

Downward movement along the supply curve

A decrease in the quantity supplied

Increase

Leftward shift of the supply curve

A decrease in supply

Decrease

Rightward shift of the supply curve

An increase in supply

Increase

Rightward shift of the supply curve

An increase in supply

Decrease

Leftward shift of the supply curve

A decrease in supply

Increase

Leftward (upward) shift of the supply curve

A decrease in supply

Decrease

Rightward (downward) shift of the supply curve

An increase in supply

Price is expected to increase

Rightward shift of the supply curve

An increase in supply

Price is expected to fall

Leftward shift of the

A decrease in supply

Determinant

Change

Price of the good

Prices of alternative products (substitutes in production)

Prices of joint products (complements in production)

Prices of inputs

Expected future prices

supply curve Technology

Number of firms (sellers)

Cost-reducing improvement in technology

Rightward shift of the supply curve

An increase in supply

Cost-increasing changes

Leftward shift of the

A decrease in supply

in technology

supply curve

More firms enter market

Rightward shift of the supply curve

An increase in supply

Firms leave market

Leftward shift of supply curve

A decrease in supply

4.4 Market equilibrium Equilibrium, excess demand and excess supply Having explained demand and supply, we can now combine them to explain equilibrium in the market for a particular good or service. The market is in equilibrium when the quantity demanded is equal to the quantity supplied, that is, when the plans of the households (buyers, demanders) coincide with the plans of the firms (sellers, suppliers). The price at which this occurs is called the equilibrium price. At any other price there will be disequilibrium, in the form of excess supply or excess demand. When there is disequilibrium, forces are set in motion to move the market towards equilibrium. We now use demand and supply schedules and curves to explain equilibrium and disequilibrium in the market for a consumer good (tomatoes). The algebraic derivation of equilibrium is explained in Appendix 4-1. Table 4-6 shows the market demand and supply schedules for tomatoes in a market on a particular day. The first column shows various prices of tomatoes (in rand per kilogram); the second column shows the quantity of tomatoes demanded at each price; the third column shows the quantity supplied at each price; the fourth column shows the difference between the quantity demanded and the quantity supplied; and the last column shows the direction of any pressure on the price of the product. When the quantity demanded is greater than the quantity supplied, there is excess demand (or a market shortage) at that particular price. When the quantity supplied

CH A P T ER 4 D E M A N D , S UPPLY AND PRICE S

75

is greater than the quantity demanded, there is excess supply FIGURE 4-10 Shifts of the supply curve: changes in supply (or a market surplus) at that par ticular price. When the quantity demanded is equal to the quantity supplied, there is equilibrium in the market. Recall that equilibrium is a state of rest in which there is no tendency for things to change (as long as the underlying forces remain unchanged). The data in Table 4-6 are illustrated graphically in Figure 4-11. In the table and in the figure we see that the quantity demanded is greater than the quantity supplied (ie that there is excess demand) at all prices lower than R5 per kg. For example, at a price of R2 per kg 320 kg are demanded, while only 50 kg are supplied. The excess demand (or market shortage) of 270 kg is indicated by bc in Figure 4-11. At all prices higher than R5 per kg the quantity supplied is greater than the quantity demanded (ie there is an excess supply or surplus). For example, at a price of R7 per kg only 120 kg are demanded, while 300 kg are supplied. The excess supply (or market surplus) of 180 kg is indicated by df in Figure 4-11. When there is excess demand (ie a market shortage), firms sell their total production but households do not obtain the The original supply curve is SS. A change in any of the quantity of the product which they would like to buy at that determinants of the quantity supplied other than the particular price. In an effort to obtain a greater quantity of the price of the product will lead to a change in supply, product, households bid up the price of the product (ie they illustrated by a shift of the supply curve. Any factor which reduces supply will shift the supply curve to offer to pay more for the product), while the firms realise that the left, to S1S1. Any factor which increases supply will they can charge a higher price. As the price rises, the quantity shift the supply curve to the right, to S2S2. Note, for supplied increases along the supply curve – existing firms example, the differences in the quantities supplied at produce more – while the quantity demanded falls along the price P . 1 demand curve. This process continues until equilibrium is reached where the quantity demanded is equal to the quantity supplied. When there is excess supply (ie a market surplus), firms find that they cannot sell all their products – they are left with unsold stocks (also called inventories) of the product. They cut their production and compete with each other to find buyers for their products by reducing the price. This results in a fall in the quantity supplied along the supply curve. Some existing firms produce less. At the same time the falling price raises the quantity demanded along the demand curve. This process continues until equilibrium is reached where the quantity demanded is equal to the quantity supplied. See Box 4-3. Market equilibrium occurs at the intersection of the demand and supply curves. This is the point at which both buyers and sellers agree upon the quantity of goods to be exchanged and the price at which they will be exchanged.3 Once equilibrium is reached, no further change will occur (as long as the underlying forces remain the same). In Chapter 5 we examine what happens when an underlying force (ie any of the non-price determinants of demand and supply) changes. The purpose is to predict how equilibrium prices and quantities will respond to changes in market forces.

The functions of prices in a market economy As explained above, prices cause adjustments in the quantities demanded and supplied of each good. Prices serve two important functions in a market economy: a rationing function and an allocative function. These functions were explained in Box 2-4 and at this point it will be useful to review that discussion.

3. Note that equilibrium occurs when the quantity demanded is equal to the quantity supplied, not when demand equals supply. Strictly

speaking, demand is only equal to supply when the demand and supply curves are identical.

76

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

TABLE 4-6 The demand and supply of tomatoes in a market on a particular day Price of tomatoes (R/kg)

Quantity demanded (kg)

Quantity supplied (kg)

Excess supply or demand (kg)

1 2 3 4 5 6 7 8

360 320 280 240 200 160 120 80

0 50 100 150 200 250 300 350

360 (excess demand) 270 (excess demand) 180 (excess demand) 90 (excess demand) 0 (equilibrium) 90 (excess supply) 180 (excess supply) 270 (excess supply)

Pressure on price Upward Upward Upward Upward None Downward Downward Downward

FIGURE 4-11 Demand, supply and market equilibrium P S

D Excess supply

8 7

f

Price of tomatoes (R/kg)

d 6 E 5 4 3

c

b 2 1

Excess demand

S

D 0

50

120

200

Q

300 320

Quantity of tomatoes (kg)

The demand curve DD intersects the supply curve SS at a price of R5 per kg – this is the equilibrium price. The equilibrium quantity is 200 kg. At a price of R2 the quantity demanded is 320 kg and the quantity supplied 50 kg. The excess demand of 270 kg is indicated by bc. At a price of R7 per kg the quantity demanded is 120 kg and 300 kg are supplied. The excess supply of 180 kg is indicated by df.

4.5 Consumer surplus and producer surplus As indicated in the previous section, the equilibrium or market-clearing price is determined by the interaction between demand and supply. With a normal, downward-sloping demand curve and a normal, upward-sloping supply curve the uniform market price implies that some consumers are paying less than the maximum they are willing to pay, while certain suppliers are receiving more than the minimum they were willing to accept. To understand this, we have to examine two important concepts, the consumer surplus and the producer surplus.

CH A P T ER 4 D E M A N D , S UPPLY AND PRICE S

77

BOX 4-3 MARKET EQUILIBRIUM Equilibrium is an analytical concept that we use in our attempt to explain how markets behave in the real world. Markets are seldom, if ever, in equilibrium. The model illustrated in Figure 4-11 implies that consumers and producers trade only once the equilibrium price and quantity have been established. In other words, we assume that markets work like auctions where auctioneers call out different prices and allow trade to take place only once they are satisfied that an equilibrium price has been agreed upon. At that price both the seller and buyer are satisfied that they are getting the best possible deal. Markets do not behave in this fashion. There is no guarantee that buyers are buying the best goods at the lowest possible prices or that sellers are getting the highest possible prices for their goods. Markets operate under conditions of uncertainty and equilibrium is never actually reached. Nevertheless, and this is the important point, markets generally tend to move towards equilibrium. If there is excess demand, prices tend to rise and if there is excess supply, prices tend to fall. Although unrealistic, in the strict sense of the word, the notion of equilibrium is a useful and indispensable element of the economist’s toolkit.

A downward-sloping demand curve and a uniform market price imply that consumers actually receive more than their money’s worth. The reason is that the market price is usually lower than the highest prices consumers are willing to pay for all but the last (or marginal) unit of the product concerned. The difference between what consumers pay and the value that they receive, indicated by the maximum amount they are willing to pay, is called the consumer surplus. In Figure 4-12 DD is the demand curve and P1 the market price. The demand curve indicates the highest prices that consumers are willing and able to pay for different quantities of the good. If the market price is P1 the consumers pay that price for each of the units purchased. This is less than the highest prices they are prepared to pay for all of the units purchased except the last one. For every quantity between zero and Q1 consumers therefore pay less than they are prepared to pay. The total amount gained in this way by the consumers is indicated by the shaded triangle in Figure 4-12. This is called the consumer surplus.

Producer surplus

FIGURE 4-12 The consumer surplus P D

Price per unit

Consumer surplus

Consumer surplus Market price

P1

D 0

Q1

Q

Quantity per period

DD is the demand curve, P1 the market price and Q1 the quantity demanded at the market price. For each quantity between 0 and Q1 (ie except Q1), consumers are willing to pay more than the price P1 they are actually paying. The shaded area thus represents a gain to consumers, called the consumer surplus.

Parallel to the concept of consumer surplus, is that of producer surplus. Whereas the consumer surplus involves the idea of consumers being willing to pay more than the market price for units of a product, the producer surplus involves the idea of producers being willing to supply units of the product at less than the market price. In Figure 4-13 the supply curve SS indicates the different quantities that producers are willing to supply at different prices. With a uniform market price P1 and an equilibrium quantity Q1, it implies that up to Q1 there is a positive difference between the lowest prices at which producers are willing to supply the different quantities and the price they actually receive. This is indicated by the shaded area in Figure 4-13. This total gain to producers is called the producer surplus.

78

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

Consumer surplus and producer surplus at market equilibrium In Figure 4-14 we combine Figures 4-12 and 4-13 to illustrate consumer surplus and producer surplus at market equilibrium. The consumer surplus is indicated by the darker shaded triangle DP1E and the producer surplus by the lighter shaded triangle SP1E. Consumer surplus and producer surplus have many important applications in economic analysis, some of which will be illustrated in later chapters.

FIGURE 4-13 The producer surplus

FIGURE 4-14 Consumer surplus and producer surplus at market equilibrium

P

P D

S

P1

Price per unit

Price per unit

S

Market price

Producer surplus

S 0

Consumer surplus P1

E Producer surplus

S

Q1

Q

Quantity per period

SS is the supply curve, P1 the market price and Q1 the quantity supplied at the market price. For each quantity between 0 and Q1 (ie except Q1), producers are willing to supply at a lower price than the price P1 that they are actually receiving. The shaded area thus represents a gain to producers, called the producer surplus.

CH A P T ER 4 D E M A N D , S UPPLY AND PRICE S

D 0

Q1

Q

Quantity per period

DD is the demand curve, SS the supply curve, P1 the equilibrium price and Q1 the equilibrium quantity. At all quantities less than Q1 consumers pay a lower price (P1) for the product than the highest prices they are willing to pay (as indicated by the demand curve). There is thus a consumer surplus, indicated by the darker shaded triangle DP1E. Likewise, at all quantities less than Q1 producers receive a higher price (P1) than the lowest prices they are prepared to supply the product for (as indicated by the supply curve). There is thus also a producer surplus, indicated by the lighter shaded triangle SP1E.

79

APPENDIX 4-1 ALGEBRAIC ANALYSIS OF DEMAND AND SUPPLY

In this appendix we show how linear demand and supply curves can be expressed algebraically in the form of equations and how these equations can be used to determine equilibrium prices and quantities. Demand and supply curves are not necessarily linear, but we stick to linear functions to keep the algebra as simple as possible. The general form of the equation of a straight line (ie a linear function) is: y = a+bx where y=dependent variable x =independent variable a =y intercept of the function (ie where x=0) b =slope of the function (which indicates how y will change if x changes)

P

Qd=a–bP............................................. (1) where Qd =quantity demanded (dependent variable) P =price of the product (independent variable) a =quantity demanded when P = 0 (intercept on quantity axis) – b =inverse of the slope of the demand curve

Price

A linear demand curve is represented by the following equation:

1 b Demand curve

Qd = a – bP

Note that the slope is negative, since a change in price leads to a change in quantity demanded in the opposite direction to the change in price. Also note that –b represents the inverse of the slope (as it is usually measured), since the independent variable is depicted on the vertical axis instead of the horizontal axis. This demand curve is shown graphically in the first figure on this page. A linear supply curve is represented by the following equation:

Qd

a Quantity demanded

P

Qs = c + dP

Qs=c + dP.............................................. (2) Supply curve

Price

where Qs=quantity supplied (dependent variable) P =price of the product (independent variable) c =presumed quantity supplied when P = 0 (intercept on the quantity axis)1 d =inverse of the slope of the supply curve

1 d

Note that the slope is positive, since a change in price leads to a change in the quantity supplied in the same direction as the Qs 0 change in price. Again note that d represents the inverse of the c Quantity supplied slope, since the independent variable is depicted on the vertical axis. This supply curve is shown graphically in the following figure. Equilibrium occurs when the quantity supplied in the market is equal to the quantity demanded in the market, that is, Qs = Qd. To obtain the equilibrium price, we use the right-hand sides of Equations 1 and 2. Since Qs = Qd, it follows that: c + dP = a − bP ∴

dP + bP = a − c

P (d + b ) = a − c ∴

P=

a−c d+ b

.......................................... (3)

1. Note that this is a presumed quantity (obtained by extending the supply curve), since it is unrealistic to assume that a positive quantity

will be supplied when the price of the product is zero.

80

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

The equilibrium quantity can be obtained by substituting the right-hand side of Equation 3 for P in the demand equation (Equation 1) or the supply equation (Equation 2). Substituting it into Equation 1 yields the following equilibrium quantity Q: ac Q  a b ..................................................(4) d b

Equations 3 and 4 may look quite intimidating. However, they simply show how the intercepts and slopes of the demand and supply curves may be used to obtain the equilibrium price and quantity. We now work through a numerical example to show how it is done. We first use Equations 1 and 2 and then use Equations 3 and 4 to check whether they yield the same answers. Suppose that the market demand and supply curves are given by Qd=200–2P andQs=50+P. At equilibriumQd=Qs, therefore: ∴

200 − 2P = 50 + P −2P − P = 50 − 200 ∴ −3P = −150 −150 P= ∴ −3 = 50

Substituting P = 50 into the equation for the demand curve, yields Qd=200–2(50)=200–100=100. Since Qd=Qs at equilibrium, Qs will also be equal to 100. In this example, therefore, the equilibrium price is 50 and the equilibrium quantity is 100. The same answer can be obtained by substituting the equilibrium price of 50 into the equation of the supply curve, ie Qs=50+P. We now use Equations 3 and 4 to see whether or not they yield the same results. In Equation 3 we had P=(a–c)/ (d+b). Substituting the values by the specific ones in our example yields: 200 − 50 1+ 2 150 = 3 = 50 (as before)

P=

ac In Equation 4 we had Q = a b . d+ b

Again substituting the values in our examples for the symbols, we obtain: 200 50 Q = 200 2 1 2 150 = 200 2 3 = 200 2 50  = 200 100 = 100 (as before)

IMPORTANT CONCEPTS Demand Individual demand Market demand Complements Substitutes Law of demand Demand schedule Demand curve Change in quantity demanded Movement along demand curve

CH A P T ER 4 D E M A N D , S UPPLY AND PRICE S

Change in demand Shift of demand curve Normal and inferior goods Relative prices Substitution effect Income effect Supply Individual supply Market supply Supply schedule

Supply curve Change in quantity supplied Movement along supply curve Change in supply Shift of supply curve Equilibrium Excess demand (shortage) Excess supply (surplus) Consumer surplus Producer surplus

81

More words of wisdom The study of economics does not seem to require any specialised gifts of an unusually high order. Is it not, intellectually regarded, a very easy subject compared with the higher branches of philosophy and pure science? Yet good, or even competent, economists are the rarest of birds. An easy subject at which very few excel! The paradox finds its explanation perhaps, in that the master-economist must possess a rare combination of gifts. He must reach a high standard in several different directions and must combine talents not often found together. He must be mathematician, historian, statesman, philosopher - in some degree. He must understand symbols and speak in words. He must contemplate the particular in terms of the general, and touch abstract and concrete in the same flight of thought. He must study the present in the light of the past for the purposes of the future. No part of man’s nature or his institutions must lie entirely outside his regard. He must be purposeful and disinterested in a simultaneous mood; as aloof and incorruptible as an artist, yet sometimes as near the earth as a politician. J OH N MAYNA R D K EYN ES (Quoted in Heilbroner, R. 1967. The worldly philosophers. London: Allen Lane, 261)

Almost the only firms that today employ economists are banks and securities houses. These people are not really valued for their advice: they are entertainers who perform before clients and advertise their employers’ services on breakfast television. J OH N K AY (Financial Times, June 5 2003)

To be conscious that you are ignorant is a great step to knowledge. B E N JAM I N DI SR A EL I

It isn't what we don't know that kills us. It's what we know that ain't so. M AR K T WA I N

It ain't ignorance that does the most damage; it's knowing so derned much that ain't so. F R AN K KN IGHT

82

C HA P T E R 4 DEMA ND, SUPPLY A N D P RI CE S

5

Demand and supply in action

Chapter overview 5.1 Changes in demand 5.2 Changes in supply 5.3 Simultaneous changes in demand and supply 5.4 Interaction between related markets 5.5 Government intervention 5.6 Agricultural prices 5.7 Speculative behaviour: self-fulfilling expectations 5.8 Concluding remarks Important concepts

Other Things Being Equal – One of the oldtime greats in economics; you can generally tell whether a man is an economist by the number of times he uses this particular phrase. WILLIAM DAVIS

When there is a real scarcity, it is in the interest of the great body of consumers that the price of corn should be raised sufficiently high, to cause such a degree of economy in consumption as may enable the supply to last throughout the year. ROBERT TORRENS

Learning outcomes Once you have studied this chapter you should be able to 䡲 䡲 䡲 䡲 䡲

explain how a change in demand affects the equilibrium price and quantity in the market explain how a change in supply affects the equilibrium price and quantity in the market predict the effects of simultaneous changes in demand and supply analyse the interaction between related markets show what happens if the government interferes in the market, for example by setting minimum or maximum prices

As we have already pointed out, demand and supply are among the most useful analytical devices available to the economist. In Chapter 4 we introduced demand and supply and showed how they combine to determine the equilibrium price and quantity exchanged in a goods market. In this chapter we show how demand and supply can be used to analyse certain situations in the economy. The emphasis is on predicting what will happen if something changes. We start by examining how equilibrium prices and quantities react to changes in demand. This is followed by a discussion of changes in supply. We then look at simultaneous changes in demand and supply, followed by an analysis of the interaction between related markets. The next section deals with government inter vention in markets, for example in the form of price fixing. We give brief attention to the problems of agriculture and conclude by discussing pricing in speculative markets.

83

In Chapter 4 we mentioned a number of factors which can cause a change in market demand as well as the factors which can cause a change in market supply. Remember that a change in any determinant of demand or supply except the price of the product will cause a change in demand or supply, illustrated by a shift of the demand curve or the supply curve. We now examine the impact of changes in demand or supply on the equilibrium price and quantity of the product concerned. We first look at changes in demand.

5.1 Changes in demand An increase in demand (represented by a rightward shift of the demand curve) will result in an increase in the price of the product and an increase in the quantity exchanged, ceteris paribus. This is illustrated in Figure 5-1(a) where the demand curve shifts from DD to D1D1. The increase in demand can be the result of a change in any of the determinants of demand except the price of the product – a change in the price of the product will result in a change in the quantity demanded, illustrated by a movement along the demand curve. As explained in Chapter 4, the sources of an increase in demand include: t BOJODSFBTFJOUIFQSJDFPGBTVCTUJUVUFQSPEVDU t BOJODSFBTFJODPOTVNFSTJODPNF t BHSFBUFSDPOTVNFSQSFGFSFODFGPSUIFQSPEVDU t BOFYQFDUFEJODSFBTFJOUIFQSJDFPGUIFQSPEVDU What happens to supply when demand increases? Supply (represented by the supply curve) remains unchanged, but the quantity supplied increases as the price of the product increases. In other words, there is an upward movement along the supply curve, such as the movement from E to E1 in Figure 5-1(a). When demand increases, there is an excess demand at the original price P0. As explained in Chapter 4, an excess demand (or market shortage) results in an increase in the price of the product. The price of the product is bid up as purchasers compete to obtain the available quantity supplied. As the price rises, suppliers increase the quantity supplied, while the quantity demanded falls. This process continues until equilibrium is re-established at E1, that is, at a higher price (P1) and a higher quantity (Q1) than before. A decrease in demand will result in a decrease in the price of the product and a decrease in the quantity exchanged, ceteris paribus. This is illustrated in Figure 5-1(b) by a leftward shift of the demand curve from DD to D2D2. The decrease in demand could be the result of a change in any of the determinants of demand except the price of the product. As explained in Chapter 4, the possibilities include:

FIGURE 5-1 Changes in demand (a) P

(b)

D1

P S

S

D

D D2

P1

Price per unit

Price per unit

E1

E P0 D1

Q1

Quantity per period

D

S Q

Q0

E2

P2

D

S 0

E P0

D2 0

Q

Q2 Q0 Quantity per period

An increase in demand is illustrated in (a). The demand curve shifts from DD to D1D1 and as a result the equilibrium price increases from P0 to P1, while the equilibrium quantity increases from Q 0 to Q 1. There is an upward movement along the supply curve from E to E1. In (b) we show a decrease in demand, illustrated by a shift of the demand curve from DD to D 2 D 2. Both the equilibrium price and the equilibrium quantity fall, to P2 and Q 2 respectively. There is a downward movement along the supply curve from E to E 2.

84

C HA P T E R 5 DEMA ND A ND SUPPLY I N A CT I ON

t BGBMMJOUIFQSJDFPGBTVCTUJUVUFQSPEVDU t BGBMMJODPOTVNFSTJODPNF t BSFEVDFEQSFGFSFODFGPSUIFQSPEVDU t BOFYQFDUFEGBMMJOUIFQSJDFPGUIFQSPEVDU Supply (represented by the supply curve) again remains unchanged. When demand decreases, the price of the product falls and this leads to a reduction in the quantity supplied. The supply curve remains unchanged, but there is a downward movement along the supply curve, such as the movement from E to E2 in Figure 5-1(b). When demand decreases, there is an excess supply at the original price P0. As explained in Chapter 4, an excess supply (or market surplus) results in a reduction in price as sellers compete to sell their excess stocks. As the price falls, the quantity supplied also falls, while the quantity demanded increases, until equilibrium is re-established at E2, that is, at a lower price (P2) and a lower quantity (Q2) than before. A range of possible changes in the demand for a product X is illustrated in Figure 5-2.

5.2 Changes in supply An increase in supply will result in a fall in the price of the product and an increase in the quantity exchanged, ceteris paribus. This is illustrated in Figure 5-3(a) where the supply curve shifts to the right (or downwards) from SS to S1S1. Such an increase in supply means that more goods are supplied at each price than before or, alternatively, that each quantity is supplied at a lower price than before. The shift of the supply curve could be the result of a change in any of the determinants of supply other than the price of the product. As explained in Chapter 4, the possibilities include: t BGBMMJOUIFQSJDFPGBOBMUFSOBUJWFQSPEVDUPSBSJTFJOUIFQSJDFPGBKPJOUQSPEVDU t BSFEVDUJPOJOUIFQSJDFPGBOZPGUIFGBDUPSTPGQSPEVDUJPOPSPUIFSJOQVUT JFBEFDSFBTFJOUIFDPTUPGQSPEVDUJPO

t BOJNQSPWFNFOUJOUIFQSPEVDUJWJUZPGUIFGBDUPSTPGQSPEVDUJPO FHBTBSFTVMUPGUFDIOPMPHJDBMQSPHSFTT oUIJT also lowers the cost of production

FIGURE 5-2 Examples of changes in demand

D1

P

P

D

P

S

S

P0

Price of X

D1

P1

P0

P1 D

D

S

P0

P1

D1

D1

S

D Price of X

Price of X

D

D

S Q

Q0 Q1 Quantity of X

D1

S

D1

Q

Q

Q1 Q0 Quantity of X

Q0 Q1 Quantity of X

(f) D1

P

P

D

S

S D1

P1

Price of X

Price of X

Price of X

D

P0

P0 P1

D1 D

S 0

CH A P T ER 5 D E M A N D AND S UPPLY IN ACT ION

D

Q Q0 Q1 Quantity of X

D1

S 0

Q Q1 Q0 Quantity of X

85

What happens to demand when supply increases? Demand (represented by the demand curve) remains unchanged but the quantity demanded increases as the price of the product falls. There is a downward movement along the demand curve, such as the movement from E to E1 in Figure 5-3(a). When supply increases, there is an excess supply at the original price P0. As explained in Chapter 4, an excess supply (or market surplus) results in a decrease in the price of the product. Firms compete with each other by lowering the price of the product. As the price falls, the quantity demanded increases, while the quantity supplied falls. This process continues until equilibrium is reestablished at E1, that is, at a lower price (P1) and a higher quantity (Q1) than before. A decrease in supply will result in an increase in the price of the product and a decrease in the quantity exchanged, ceteris paribus. This is illustrated in Figure 5-3(b) by a leftward (upward) shift of the supply curve from SS to S2S2. Such a decrease in supply means that fewer goods are supplied at each price than before or, alternatively, that each quantity is supplied at a higher price than before. The shift of the supply curve could be the result of a change in any of the determinants of supply other than the price of the product. As explained in Chapter 4, the possibilities include: t BOJODSFBTFJOUIFQSJDFPGBOBMUFSOBUJWFQSPEVDUPSBGBMMJOUIFQSJDFPGBKPJOUQSPEVDU t BOJODSFBTFJOUIFQSJDFPGBOZPGUIFGBDUPSTPGQSPEVDUJPOPSPUIFSJOQVUT JFBOJODSFBTFJOUIFDPTUPGQSPEVDUJPO

t BEFUFSJPSBUJPOJOUIFQSPEVDUJWJUZPGUIFGBDUPSTPGQSPEVDUJPO XIJDIBMTPSBJTFTUIFDPTUPGQSPEVDUJPO

What happens to demand when supply decreases? Demand remains unchanged but there is an upward movement along the demand curve, such as the movement from E to E2 in Figure 5-3(b). When supply decreases, there is excess demand at the original price P0. As explained in Chapter 4, excess demand (or a market shortage) results in an increase in the price of the product. Consumers bid up the price of the product in their attempt to obtain the available quantity supplied. As the price increases, the quantity demanded decreases, while the quantity supplied increases. This process continues until equilibrium is re-established at E2, that is, at a higher price (P2) and lower quantity (Q2) than before. A few possible changes in the supply of a product X are illustrated in Figure 5-4. FIGURE 5-3 Changes in supply (a)

(b)

P

P S2 S D

D

E P0 E1

P1

P2 P0

E

S2 D

S S1 0

E2 Price per unit

Price per unit

S1

Q1

Quantity per period

D

S Q

Q0

S

Q Q2

Q0

Quantity per period

In (a) we show an increase in supply, illustrated by the shift of the supply curve from SS to S1S1. The equilibrium price falls to P1 and the equilibrium quantity increases to Q1. There is a downward movement along the demand curve from E to E1. A decrease in supply is illustrated in (b) by a shift of the supply curve from SS to S2S2. The equilibrium price increases to P2 while the equilibrium quantity falls to Q2. In this case there is an upward movement along the demand curve from E to E2.

86

C HA P T E R 5 DEMA ND A ND SUPPLY I N A CT I ON

FIGURE 5-4 Examples of changes in supply

5.3 Simultaneous changes in demand and supply When only demand or only supply changes, it is possible to predict what will happen to equilibrium prices and quantities in the market. However, if demand and supply change simultaneously, the precise outcome cannot be predicted. This is a special case of a more general problem in economic theory (as well as in most other theories). When one factor is allowed to change, it is usually possible to determine or predict the effects of such a change. But when more than one change is involved, it is seldom possible to predict the outcome, since the changes may work in opposite directions. The method we use here requires that only one variable or force is allowed to change at a time. We have seen that an increase in demand leads to an increase in the equilibrium price and that a decrease in supply also leads to an increase in the equilibrium price. It follows, therefore, that an increase in demand accompanied by a decrease in supply will raise the equilibrium price of the product concerned. What we cannot predict, however, is what will happen to the equilibrium quantity exchanged in the market. An increase in demand raises the equilibrium quantity, ceteris paribus, while a decrease in supply lowers the equilibrium quantity, ceteris paribus. The two forces work in opposite directions as far as the equilibrium quantity is concerned and the outcome will depend on the relative magnitudes of the changes in demand and supply. Similar problems occur in other cases. For example, when demand and supply both decrease it is possible to predict what will happen to the quantity exchanged, since both forces have the same impact on the equilibrium quantity. Their combined impact on the equilibrium price is, however, uncertain, since a decrease in demand reduces the price, ceteris paribus, while a decrease in supply raises the price, ceteris paribus. The equilibrium price could rise, remain unchanged, or fall, depending on the relative magnitudes of the changes in demand and supply.

CH A P T ER 5 D E M A N D AND S UPPLY IN ACT ION

87

The results of the various combinations of simultaneous changes in demand and supply are summarised in Table 5-1. Figure 5-5 illustrates the problem by showing the possible outcomes of a simultaneous increase in demand and decrease in supply. In Figure 5-5(a) the relative changes in demand and supply are equal; in (b) the relative change in supply is greater than the relative change in demand; and in (c) the relative change in demand is greater than the relative change in supply. The changes in demand and supply both raise the equilibrium

TABLE 5-1 Simultaneous changes in demand and supply Change in demand

Change in supply

Change in price

Change in quantity

Increase

Increase

Uncertain

Increase

Increase

Decrease

Increase

Uncertain

Decrease

Increase

Decrease

Uncertain

Decrease

Decrease

Uncertain

Decrease

FIGURE 5-5 A simultaneous increase in demand and decrease in supply (a)

P

S1 D1

S

Price per unit

D

E1

P1 P0

E

S1

D1 D

S

Q

Q0 Quantity per period

(b) P

(c) P

S2

D2 D

S3 E3

S

P3

S

E2 P2

Price per unit

Price per unit

D3

D

E P0

E

P0

D3

S2 S3

D2

S

D Q

0 Q2 Q0 Quantity per period

D

S

Q

0 Q0 Q3 Quantity per period

In all three diagrams the original demand, supply, equilibrium price and equilibrium quantity are represented by DD, SS, P0 and Q 0. A simultaneous increase in demand (illustrated by a rightward shift of the demand curve) and decrease in supply (illustrated by a leftward shift of the supply curve) raises the price of the product. The impact on the equilibrium quantity depends on the relative magnitude of the changes. In (a) the quantity remains unchanged at Q 0. In (b) it falls to Q 2 and in (c) it increases to Q 3.

88

C HA P T E R 5 DEMA ND A ND SUPPLY I N A CT I ON

price of the product but the change in the equilibrium quantity is uncertain. In Figure 5-5(a) the equilibrium quantity remains unchanged; in (b) it falls; and in (c) it rises. The figure clearly shows how the outcome depends on the relative changes in demand and supply.

5.4 Interaction between related markets As we saw in Chapter 4, many products are related to each other in some way or another. For example, some are substitutes (in consumption), some are complements (in consumption), some are substitutes in production, some BSF KPJOU QSPEVDUT BOE TP PO *O UIJT TFDUJPO XF FYUFOE UIF BOBMZTJT JO UIF QSFWJPVT TFDUJPO BOE QSPWJEF TPNF examples of interrelationships between different markets.

Fish and meat Until 1966 Roman Catholics were not allowed to eat meat on Fridays and tended to eat fish instead. In 1966 the Pope lifted the ban and announced that Catholics could eat meat on Fridays. What was the probable impact of this decision on the prices and average weekly sales of fish and meat respectively? Economic theory tells us that in predominantly Catholic areas the demand for fish would have declined, illustrated by a leftward shift of the demand curve, as in Figure 5-6(a), while the demand for meat would have increased, illustrated by a rightward shift of the demand curve, as in Figure 5-6(b). As a result the price and weekly sales of fish would have declined, while the price and weekly sales of meat would have increased, as illustrated in the two diagrams. Research by an American economist, Frederick Bell, showed that fish prices and sales did indeed decline. This is an example of the impact of a change in tastes (broadly defined) on demand, and therefore on the equilibrium prices and quantities, in the case of substitute products.

FIGURE 5-6 Interaction between the markets for fish and meat (a)

(b) Pm

Pf D

D1

S D1

S

D E0

P0

P1 P1

E1

E1 E0

P0 D

D1 S

S

D1

D Qf

Q1

Q0

Qm Q0

Q1

The markets for fish and meat are illustrated in (a) and (b) respectively. The original demand and supply curves are DD and SS and the equilibrium prices and quantities are P0 and Q0 respectively. In (a) the decrease in the demand for fish is illustrated by the leftward (downward) shift of the demand curve from DD to D1D1. The equilibrium price of fish declines from P0 to P1 and the weekly quantity traded falls from Q 0 to Q1. In (b) the increase in the demand for meat is illustrated by the rightward (upward) shift of the demand curve from DD to D1D1. The equilibrium price of meat increases from P0 to P1 and the weekly quantity traded rises from Q 0 to Q1.

CH A P T ER 5 D E M A N D AND S UPPLY IN ACT ION

89

Conclusive medical evidence that fish is much healthier than meat could have exactly the opposite effect to that shown in Figure 5-6. This can be illustrated by simply exchanging the diagrams for fish and meat.

Motorcars and tyres What will happen, ceteris paribus, in the market for new tyres if the cost of producing motorcars increases (eg as a result of successful wage claims by trade unions in the motorcar industry)? The increase in costs in the motorcar industry can be illustrated by a leftward (upward) shift of the supply curve, as in Figure 5-7(a). As a result, the equilibrium price of motorcars will increase from P0 to P1 and the equilibrium quantity will fall from Q0 to Q1. With fewer motorcars being produced, the demand for new tyres (a complementary good) will decrease, illustrated by a leftward (downward) shift of the demand curve in Figure 5-7(b). As a result, the equilibrium price of tyres will fall from P0 to P1 and the equilibrium quantity will also decrease, from Q0 to Q1. A cost-saving technological improvement in the production of motorcars or an increase in the productivity of the workers in the industry (without a concomitant increase in wages) will have exactly the opposite impact to that illustrated in Figure 5-7.

5.5 Government intervention The changes explained in the previous sections will occur only if the market forces of supply and demand are free to establish the equilibrium prices and quantities of goods and services. Quite frequently, however, consumers, trade unions, farmers, business people and politicians are not satisfied with the prices and quantities determined by market demand and supply. Their dissatisfaction leads them to put pressure on government to intervene to influence prices and quantities in the market. This intervention can take different forms, including:

FIGURE 5-7 Interaction between markets for motorcars and tyres P

P S1 D

D

S

S

D1

E1 P1 P0

P0

E0

E1

E0

P1 S1 D

S

Q Q1

Q0

D

S D1 0

Q

Q1 Q0

The markets for motorcars and tyres are illustrated in (a) and (b) respectively. The original demand and supply curves are DD and SS and the equilibrium prices and quantities P0 and Q0 respectively. In (a) the impact of an increase in the costs of producing motorcars is illustrated by the leftward (upward) shift of the supply curve from SS to S1S1. The equilibrium price of motorcars increases from P0 to P1 and the equilibrium quantity falls from Q 0 to Q1. In (b) the consequent decrease in the demand for tyres is illustrated by a leftward (downward) shift of the demand curve from DD to D1D1. The equilibrium price of tyres falls from P0 to P1 and the equilibrium quantity also decreases from Q 0 to Q1.

90

C HA P T E R 5 DEMA ND A ND SUPPLY I N A CT I ON

t TFUUJOHNBYJNVNQSJDFT QSJDFDFJMJOHT

t TFUUJOHNJOJNVNQSJDFT QSJDFnPPST

t TVCTJEJTJOHDFSUBJOQSPEVDUTPSBDUJWJUJFT t UBYJOHDFSUBJOQSPEVDUTPSBDUJWJUJFT

FIGURE 5-8 Maximum prices P D

In this section we examine the impact of these different types of intervention.

Governments often set maximum prices for certain goods and services. In the 1970s the prices of many goods and services in South Africa were controlled by government (eg the prices of bricks, sand, cement, sugar, firearms, television receivers, glass and metal containers, glass, yellow margarine, bread, electrical appliances, radios, tyres, sanitary ware, windows and pharmaceutical products). During the 1980s, however, almost all the price controls were abolished, and nowadays most prices are determined by market forces. It is nonetheless important to analyse the impact of maximum price fixing. Some prices are still fixed by government and consumers often call for price control. There is thus always the possibility that the government may reintroduce it. Governments set maximum prices to

c

P1

Price per unit

Maximum prices (price ceilings, price control)

S

E P0

a

Pm

b

D

S 0

Q1

Q0

Q2

Q

Quantity per period

If the government sets a maximum price of Pm below the equilibrium price of P0, this results in an excess demand of Q2 – Q1 (or ab).

t LFFQUIFQSJDFTPGCBTJDGPPETUVGGTMPX BTQBSUPGBQPMJDZUPBTTJTUUIFQPPS t BWPJEUIFFYQMPJUBUJPOPGDPOTVNFSTCZQSPEVDFST UIBUJT UPBWPJEiVOGBJSwQSJDFT t DPNCBUJOnBUJPO t MJNJUUIFQSPEVDUJPOPGDFSUBJOHPPETBOETFSWJDFT FHJOXBSUJNF If a maximum price is set above the equilibrium (or market-clearing) price, it will have no effect on the market price or the quantity exchanged. Prices and quantities will still be determined by demand and supply. However, when a maximum price is set below the equilibrium price (as is usually the case), it will have significant effects. In Figure 5-8 we show a demand curve (DD), a supply curve (SS), the equilibrium price (P0) and the equilibrium quantity exchanged (Q0). Suppose the government then sets a maximum price (Pm) below the equilibrium price (P0). At the lower price (Pm) consumers will demand a quantity (Q2) which is higher than the equilibrium quantity (Q0). Suppliers, however, will be willing to supply only Q1, which is lower than Q0. There is thus a market shortage (or excess demand) equal to the difference between Q2 and Q1 (or ab). In the absence of price control, this excess demand will raise the price until equilibrium is re-established at P0 and Q0. But when price control is introduced, different ways of solving the problem of excess demand have to be found. When market prices are not allowed to fulfil their rationing function, someone or something else must do UIFKPC5IFCBTJDQSPCMFNJTIPXUPBMMPDBUFUIFBWBJMBCMFRVBOUJUZTVQQMJFE Q1) between consumers who demand a total of Q2 of the good concerned.1 This can be done in various ways: t $POTVNFSTNBZCFTFSWFEPOBimSTUDPNFmSTUTFSWFEwCBTJT SFTVMUJOHJORVFVFTPSXBJUJOHMJTUT t 4VQQMJFSTNBZTFUVQJOGPSNBMSBUJPOJOHTZTUFNT FHCZMJNJUJOHUIFRVBOUJUZTPMEUPFBDIDPOTVNFSPSCZTFMMJOH to regular customers only). t (PWFSONFOUNBZJOUSPEVDFBOPGmDJBMSBUJPOJOHTZTUFNCZJTTVJOHSBUJPOUJDLFUTPSDPVQPOTXIJDIIBWFUPCF submitted when purchasing the product. Queues and informal rationing systems all entail additional costs (to the consumers and/or the suppliers). For example, consumers have to spend time queueing, while suppliers have to use scarce resources to administer the rationing system. Official rationing systems amount to additional government intervention and stimulate corruption (eg bribery of rationing officials). Another consequence of maximum price fixing is the development of black markets. 1. One possibility is to import the difference between Q2 and Q1, provided such imports are available at a price of Pm or less. This will eliminate the short-

age, but if such imports are available, price control is unnecessary to start with. CH A P T ER 5 D E M A N D AND S UPPLY IN ACT ION

91

Black markets occur in any situation where the market forces of supply and demand cannot (or are not allowed UP FMJNJOBUFFYDFTTEFNBOE'PSFYBNQMF XIFOUIFSFJTBNBKPSTQPSUJOHFWFOU TVDIBTUIF8JNCMFEPOUFOOJT finals, the World Cup soccer final or a rugby test between South Africa and New Zealand), or a rock concert featuring, say, Kanye West or Lady Gaga, tickets are in limited supply. The tickets are issued at fixed prices and the quantity of tickets is limited by how many people the venue can accommodate. Although the prices may be high, there are still more people who want to attend the event than there are tickets available. This situation is similar to the one illustrated in Figure 5-8. Anyone who succeeds in getting a ticket (eg by queueing through the night) can sell this ticket to someone else at a much higher price. In Figure 5-8 we see that consumers are willing to pay a price of P1 for a quantity of Q1. Anyone who is able to purchase a ticket at a price of Pm (the official price) has the potential to make a profit equal to the difference between P1 and Pm by selling it to someone who was not fortunate enough to get hold of a ticket. This alternative market in tickets is called a black market. Not all black markets are illegal, but in the case of maximum price fixing by government, black market activity is outlawed. A black market is therefore often defined as an illegal market in which goods are sold above the maximum price set by government. All price controls (including controls on interest rates, exchange rates and other less obvious forms of prices) stimulate black market activity as unsatisfied potential purchasers seek to obtain the good or service concerned. Fixing prices below the equilibrium (or market-clearing) price thus t DSFBUFTTIPSUBHFT PSFYDFTTEFNBOE

t QSFWFOUTUIFNBSLFUNFDIBOJTNGSPNBMMPDBUJOHUIFBWBJMBCMFRVBOUJUZBNPOHDPOTVNFST t TUJNVMBUFTCMBDLNBSLFUBDUJWJUZCZQSPWJEJOHBOJODFOUJWFGPSQFPQMFUPPCUBJOUIFHPPEBOESFTFMMJUBUBIJHIFS price to those consumers who are willing to pay higher prices to obtain it. Price controls are invariably implemented in the sincere belief that they are in the best interests of society – in many cases they are motivated by an honest concern for the well-being of poor consumers or low-income citizens. Price controls, however, create many problems of their own. They are nowhere near as attractive as those who propose them would like us to believe, and the controls usually have to be abolished sooner or later. Nevertheless, price control is introduced every now and then. Many politicians are apparently under the impression that the CBTJDGPSDFTPGEFNBOEBOETVQQMZ JF"EBN4NJUITQSPWFSCJBMJOWJTJCMFIBOE DBOCFFMJNJOBUFETJNQMZCZQBTTJOH a law. A good example of the unintended consequences of well-meant price control is rent control (see Box 5-1). A further example is administered prices, which we discuss in Box 5-2.

BOX 5-1 RENT CONTROL Rent control provides one of the best examples of the problems created by imposing a maximum price below the equilibrium (or market-clearing) price. It has been said that one of the surest ways of destroying a city (short of dropping a nuclear bomb on it) is to implement rent control. Like all other controls, the motives of rent control are praiseworthy. In South Africa, for example, rent control was introduced in the late 1940s to protect tenants from being exploited by the owners of rented accommodation during the post-war housing shortage. This shortage arose because, during the war, production had been geared to the war effort and the construction of dwelling units had been curtailed. The problem was exacerbated by the return of ex-servicemen who did not have accommodation and could not afford to purchase houses. A similar situation developed later in the townships, where people were not allowed to purchase land or houses, and government stopped constructing additional houses in the belief that blacks were temporary visitors to the so-called white areas and would sooner or later return to the “homelands”. At the same time rentals were kept low, so as to assist the generally poor residents in the townships. In both these cases market forces were prevented from fulfilling their rationing and allocative functions. The results were permanent shortages of rented accommodation. When rent controls are imposed, owners of rented accommodation (eg flats) can react by tTFMMJOHUIFnBUTVOEFSTFDUJPOBMUJUMF tDPOWFSUJOHUIFCVJMEJOHTJOUPPGmDFTPSPUIFSGPSNTPGBDDPNNPEBUJPOXIJDIBSFOPUTVCKFDUUPSFOUDPOUSPM

92

C HA P T E R 5 DEMA ND A ND SUPPLY I N A CT I ON

tMPXFSJOHUIFJSPQFSBUJOHDPTUTCZTLJNQJOHPONBJOUFOBODFBOESFQBJST JFCZSFEVDJOHUIFRVBMJUZPGUIFJS service) – in some cases the buildings deteriorate to such an extent that they are eventually simply abandoned tDFBTJOH UP FSFDU OFX SFOUFE BDDPNNPEBUJPO o UIF TVQQMZ PG OFX SFOUFE BDDPNNPEBUJPO GBMMT XIJMF UIF population and demand increase) and the shortage becomes worse. All these actions aggravate the shortage of rented accommodation. When rent control is in force, the market cannot fulfil its rationing function and alternatives have to be found. Prospective tenants are at the mercy of agents and landlords, and often resort to bribery to get their names moved up on the long waiting lists (queues). Corruption and favouritism are rife. Those who are fortunate enough to obtain accommodation (ie the existing tenants) benefit – at least for as long as the condition of the units does not deteriorate too much. Prospective tenants often have to pay “black market prices”, for example in the form of exorbitant “finder’s fees” or “key deposits”. The longer the controls are maintained, the greater the difference between controlled rentals and market-clearing rentals will become, and the more difficult it will become to lift the controls, since rentals will soar when the controls are abolished. In the end no one gains – those fortunate enough to obtain accommodation find that the condition of the buildings deteriorates over time (possibly even to the point where they become uninhabitable); the owners cannot make a profit and leave the market; and many people cannot find accommodation at all. The irony is that those who were supposed to benefit from the controls probably suffer the most.

BOX 5-2 ADMINISTERED PRICES Although price control, in the sense of government control of the prices of goods and services produced by private firms, has for all practical purposes been abolished in South Africa, government departments or other public sector agencies still determine the prices of a range of goods and services in South Africa. These prices are usually called administered prices, to indicate that they are the result of administrative processes rather than of the market forces of supply and demand. Administered prices often feature strongly in the debate on the causes of inflation in South Africa and appropriate anti-inflation policy. According to the South African Reserve Bank, the prices of more than 20 per cent of consumer goods and services can be classified as administered prices. The most important of these are the prices of medical services, petrol and diesel, communication services, electricity and education (in that order). Other prices administered by the public sector include those of public transport services, water and licences. The term “administered prices” was first coined in the United States in the 1930s to indicate private sector prices that were determined discretionally by the suppliers of goods and services instead of by market forces. In South Africa, however, the term is used exclusively to indicate government involvement in price determination. The different prices are administered according to different conventions, rules and formulae. 'PS FYBNQMF B TQFDJmD GPSNVMB JT VTFE UP EFUFSNJOF UIF NPOUIMZ BEKVTUNFOUT JO GVFM QSJDFT XIJMF PUIFS administered prices are determined in other ways, often on a cost-plus basis.

䡲 THE WELFARE COSTS OF MAXIMUM PRICE FIXING The concepts of consumer surplus and producer surplus, introduced in Chapter 4, can be used to illustrate the welfare loss associated with maximum price fixing. In Figure 5-9, a maximum price Pm is set below the market-clearing price P1. As a result the quantity exchanged falls from the equilibrium level Q1 to Qm. At the market-clearing price P1, the consumer surplus was P1DE (see Figure 4-12). At the new fixed price, Pm, the consumer surplus is PmDRU.

CH A P T ER 5 D E M A N D AND S UPPLY IN ACT ION

93

Minimum prices (price supports, price floors) Markets for agricultural products are usually characterised by a relatively stable demand, but also by a supply which JT TVCKFDU UP MBSHF nVDUVBUJPOT 1SJDFT UIFSFGPSF UFOE UP nVDUVBUFBOEGBSNFSTJODPNFJTVOTUBCMFBOEVODFSUBJO 5P TUBCJMJTF GBSNFST JODPNF HPWFSONFOUT PGUFO introduce minimum prices (or price floors) which serve as guaranteed prices to producers. If the minimum price is below the ruling equilibrium price, the operation of market forces is not disturbed, but if the minimum price is above the ruling equilibrium price (as is often the case) there is a surplus (or excess supply). This is illustrated in Figure 5-10. In Figure 5-10 we show a hypothetical market for beef. DD is the demand curve and SS the supply curve. The equilibrium price is R30,00 per kg and the equilibrium quantity is 7 million kg. Suppose the government sets a minimum price of R40,00 per kg. At that price the quantity demanded is 4 million kg and the quantity supplied is 9 million kg. There is thus an excess supply, or a surplus, of 5 million kg (represented by the difference between a and b in the figure). When government fixes a minimum price above the equilibrium price, it creates a market surplus. This usually requires further government intervention. The options are essentially the following: t (PWFSONFOUQVSDIBTFTUIFTVSQMVTBOEFYQPSUTJU t (PWFSONFOU QVSDIBTFT UIF TVSQMVT BOE TUPSFT JU (provided the product is non-perishable). t (PWFSONFOU JOUSPEVDFT QSPEVDUJPO RVPUBT UP MJNJU the quantity supplied to the quantity demanded at the minimum price. t (PWFSONFOUQVSDIBTFTBOEEFTUSPZTUIFTVSQMVT t 1SPEVDFSTEFTUSPZUIFTVSQMVT

94

FIGURE 5-9 The welfare costs of maximum price fixing P D

Price per unit

Supply curve R A

T

P1

C

B Pm

E

U

Demand curve 0

Q

Qm Q1 Quantity per period

Prior to price fixing, the equilibrium price is P1 and the equilibrium quantity Q1. Government then fixes a maximum price Pm below the equilibrium price. The quantity exchanged falls to Qm. Rectangle B is transferred from the producer surplus to the consumer surplus. Triangle A, which used to be part of the consumer surplus, and triangle C, which used to be part of the producer surplus, both disappear. The total deadweight loss to society is equal to A plus C.

FIGURE 5-10 A minimum price P S D

Price of beef (rand per kilogram)

Consumers have lost the shaded triangle indicated by A, since only Qm is exchanged; but they have gained rectangle B, since those who can obtain the product now pay less for it than before. Area B used to be part of the producer surplus but now becomes part of the consumer surplus. In the absence of the maximum price, the producer surplus is indicated by the triangle 0P1E (see Figure 4-13). All that remains of this surplus after the maximum price is set, is the small triangle 0PmU. As mentioned above, rectangle B is transferred to the consumer surplus. Triangle C simply disappears, since only Qm is produced and exchanged. The total welfare loss to society is triangle A plus triangle C. This is usually referred to as deadweight loss. Too little is being produced, and in the end society (which consists of consumers and producers) is worse off as a result of the interference in the market system.

Surplus 40

b

a E

30 20 D 10 S 0

Q 4

7

9

Quantity of beef (millions of kilograms)

DD and SS represent the demand and supply of beef. The equilibrium price is R30 per kg and the equilibrium quantity is 7 million kg. The introduction of a minimum price of R40 per kg results in a market surplus of 5 million kg (represented by ab).

C HA P T E R 5 DEMA ND A ND SUPPLY I N A CT I ON

t BMM DPOTVNFST JODMVEJOH QPPS IPVTFIPMET IBWF UP QBZ artificially high prices t UIF CVML PG UIF CFOFmU BDDSVFT UP MBSHF QSPEVDFST PS concerns owned by big companies t JOFGmDJFOUQSPEVDFSTBSFQSPUFDUFEBOENBOBHFUPTVSWJWF t UIF EJTQPTBM PG UIF NBSLFU TVSQMVTFT VTVBMMZ FOUBJMT further cost to taxpayers and welfare losses to society. If government wishes to assist certain producers, then direct cash subsidies paid only to those producers is a better alternative than fixing a minimum price. With direct subsidies there is no interference in the price mechanism. Only those who are supposed to benefit receive the subsidy and the cost of the subsidy is explicit, instead of being hidden (as in the case of minimum prices).

FIGURE 5-11 The welfare costs of minimum price fixing P D Supply curve Price per unit

5IFBSUJmDJBMMZIJHIQSJDFJTVTVBMMZKVTUJmFECZBSHVNFOUT UIBU JU JT JO DPOTVNFST JOUFSFTUT UIBU QSPEVDFST SFDFJWF B stable income (and keep producing the products) or that the surplus can be exported to earn foreign exchange. However, when the surplus is exported, it is often exported at a loss, and always at the expense of domestic consumers, who have to pay an artificially high price for the product. If the surplus cannot be exported, further government intervention is required to dispose of the surplus. This often results in additional cost to taxpayers, and always entails a welfare loss to society. Setting minimum prices above equilibrium prices is a highly inefficient way of assisting small or poorer producers, since

R

Pm A P1

B E

C T

Demand curve 0

Qm

Q1

Q

Quantity per period

Prior to price fixing the equilibrium price is P1 and the equilibrium quantity Q1. Government then fixes a minimum price Pm above the equilibrium price. If producers respond to actual demand, the quantity supplied (and exchanged) falls to Qm. Rectangle A is transferred from the consumer surplus to the producer surplus. Triangle B, which used to be part of the consumer surplus, and triangle C, which used to be part of the producer surplus, both disappear. The total deadweight loss to society is equal to B plus C.

䡲 THE WELFARE COSTS OF MINIMUM PRICE FIXING The concepts of consumer surplus and producer surplus can also be used to illustrate the welfare loss of minimum price fixing. In Figure 5-11, the equilibrium price and quantity are P1 and Q1 respectively. The government now fixes a minimum price Pm above the equilibrium price. If we assume that producers respond to actual demand, then the quantity supplied (and exchanged) will fall to Qm. In the absence of price fixing, the consumer surplus is P1DE and the producer surplus is 0P1E. After minimum price fixing the consumer surplus is PmDR. Consumers thus lose rectangle A (to the producers) and triangle B (which disappears). The producer surplus becomes 0PmRT. Producers gain rectangle A at the expense of consumers but triangle C disappears. The total deadweight loss to society is thus triangle B plus triangle C. As in the case of maximum price fixing, too little is produced and society is worse off as a result of the interference in the market system. If producers ignore and do not respond to actual demand, the situation is slightly more complicated, since a surplus will be produced, as explained earlier. The welfare costs of such a situation are not examined here.

Subsidies An alternative to setting maximum or minimum prices is to subsidise consumers or producers. In this subsection we examine a subsidy paid to producers to illustrate the impact of such a subsidy on the market price and the quantity exchanged. In Figure 5-12 DD and SS are the original demand and supply curves, respectively. The equilibrium price is P0 and the equilibrium quantity is Q0. Suppose the government wants to lower the price to the consumers and increase production by subsidising the producers. The new supply curve is illustrated by S1S1 and the subsidy per unit by the vertical difference between SS and S1S1. The new equilibrium is at E1, indicating a price P1 and a quantity Q1. At Q1 the producers receive a price P2 equal to what the consumers pay (P1) plus the subsidy per unit (the difference between P2 and P1).

CH A P T ER 5 D E M A N D AND S UPPLY IN ACT ION

95

FIGURE 5-12 A subsidy paid to suppliers

FIGURE 5-13 The incidence of an excise tax on cigarettes

P D

rice

1

P2 P0

P1

1

1

moun o e subsidy per uni

D Q0 Q1

Q

uan i y

The original demand and supply are illustrated by DD and SS. The equilibrium price and quantity are P0 and Q0 respectively. The subsidy is illustrated by a shift of the supply curve to S1S1. The amount of the subsidy is the vertical difference between SS and S1S1. The new equilibrium is at E1, indicating a price P1 and quantity Q1. The price is lower and the quantity is higher than before. The suppliers receive a price P2 (ie P1 plus the subsidy).

SS is the supply curve before the imposition of the tax of R8,00 per packet of cigarettes. DD is the demand curve. The original equilibrium price is R24,00 per packet and the equilibrium quantity is 150 000 packets per week. After the imposition of the tax, the supply curve shifts up by R8,00 to STST. The new equilibrium is indicated by E1. The equilibrium price is R28,80 per packet and the equilibrium quantity is 120 000 packets per week. The suppliers receive the selling price less the tax, that is, R20,80 per packet. This is indicated by E2 on the original supply curve. The difference between E1 and E2 is the tax. The consumers pay R4,80 extra per packet and the suppliers receive R3,20 less per packet than before.

Taxes One of the largest sources of tax revenue is the taxes government levies on goods and services. Some of these taxes (eg VAT) are levied as a percentage of the price of the good or service, while others (eg the taxes on cigarettes, alcoholic beverages and fuel) are a specific amount per unit of the product. We now examine the impact of the latter type, called specific taxes, and also ask who actually bears the burden of the tax. One of the basic principles of taxation is that the party that actually pays the tax to the authorities (the South African Revenue Service) does not necessarily bear the burden, or at least the full burden, of the tax. In technical terms we say that the effective incidence of the tax may differ from the statutor y incidence of the tax. We now use the impact of a specific excise tax, namely the tax on cigarettes, to illustrate this point. Suppose cigarettes cost R24,00 a packet in the absence of any excise tax or duty on cigarettes, and that the government then imposes a specific tax of R8,00 per packet. This tax has to be paid by the manufacturers on each packet of cigarettes that they produce. Who will bear the burden of the tax? Will cigarette smokers end up paying the tax or will it be borne by the manufacturers of cigarettes? The manufacturers will attempt to pass on the tax to the consumers. But the extent to which they are able to do so is limited by the demand and supply of cigarettes. In Figure 5-13, the demand curve (DD) and the supply curve (SS) for cigarettes represent the position before the introduction of the tax. The equilibrium price is R24,00 and the quantity exchanged is 150 000 packets per week. When the tax is levied, the suppliers add R8,00 to the price at each level of production. For example, to receive R24,00 per packet, they plan to charge R32,00, since R8,00 has to be paid to government in the form of tax. This difference applies to each and every quantity. The supply curve will thus shift up by R8,00 at each level of production. The new supply curve, after the imposition of the tax, is STST. We now compare the original equilibrium at E with the new equilibrium at E1. The new equilibrium price (R28,80) is higher than before but the equilibrium quantity (120 000) is lower. The amount per packet received by the suppliers is also lower than before. The price to the consumer (R28,80) is higher, but the suppliers have to pay R8,00 to the government, which means that they are left with only R20,80 per packet. This is indicated by point E2 in the figure. The tax per packet is the difference

96

C HA P T E R 5 DEMA ND A ND SUPPLY I N A CT I ON

t 5IFconsumers, who have to pay more. t 5IFTVQQMJFST XIPSFDFJWFMFTTGPSFBDIVOJUTPMEoUIJT means that the profits of the owners or shareholders of the suppliers are lower than before.

FIGURE 5-14 The welfare costs of a specific excise tax P

Supply E1 P1 A P0 B

P2

t 5IFemployees of the suppliers – since the production IBT GBMMFO UIFSF XJMM CF GFXFS KPCT BWBJMBCMF JO UIF industry (alternatively, the existing employees will have to accept wage cuts which will increase supply, illustrated by a shift of the supply curve to the right). 䡲 THE WELFARE IMPLICATIONS OF A SPECIFIC EXCISE TAX

SupplyT

D

Price per unit

between E1 and E2. The suppliers have not succeeded in passing the full tax on to the consumers. They also have to pay part of the tax (R24,00 ⫺ R20,80 = R3,20 per packet), not because they want to, but because the forces of demand and supply give them no alternative. The burden of an excise tax is actually shared by three groups:

X Y

E0

E2

Demand S

Q Q1

Q0

Quantity per period

We can also illustrate the welfare cost of an excise tax. Before the imposition of the tax, the equilibrium price and Figure 5-14 is a redrawn version of Figure 5-13 without the quantity are P0 and Q0 respectively. After the imposition numbers. Before the introduction of the tax, DE0P0 and of the tax, the equilibrium price and quantity are P0 and SE0P0 represented the consumer surplus and producer Q0 respectively. The government gains rectangle A (at surplus respectively. After the introduction of the tax, the the expense of the consumers) and rectangle B (at the government receives rectangles A and B in tax revenue. expense of the producers). Triangles X and Y disappear. X Rectangle A is transferred from the consumer surplus plus Y represents the deadweight loss of the tax. to government, and rectangle B is transferred from the producer surplus to government. Because the imposition of the tax reduces the level of output, triangle X (which initially formed part of the consumer surplus) and triangle Y (which initially formed part of the producer surplus) both disappear. Triangle E1E0E2 (ie X + Y) represents the total deadweight loss of the tax.

Quotas Governments sometimes also use quotas to limit the production of certain goods, for example the fishing quotas imposed to prevent the overexploitation of our marine resources. Another example is the self-imposed quotas by the Organisation of Petroleum Exporting Countries (Opec). The impact of an imposition of a quota is illustrated in Figure 5-15. The demand and supply are represented by DD and SS respectively, with P0 as the equilibrium price and Q0 as the equilibrium quantity. A quota is then introduced at QM, below the equilibrium quantity. The new effective supply curve is thus QMQM. (Note that a quota imposed above the equilibrium quantity will have no impact.) The price to the consumers rises to P1, while the cost to the producers falls to P2. The production level (QM) is below the level that would have obtained in the absence of a quota (Q0). The welfare implications of such a quota are exactly the same as those of a minimum price fixed above the equilibrium price (see Figure 5-11).

Import tariffs We can also use demand and supply curves to illustrate the impact of a specific import tariff on prices and quantities. In Figure 5-16, DD represents the domestic (South African) demand for textiles and SS the domestic supply of textiles. In the absence of world trade the equilibrium price is Pd and the equilibrium quantity is Q3, as indicated by point Ed. When the economy is opened up to international trade, countries with a relative or comparative advantage in the production of textiles will export textiles to South Africa at a lower price, which we call the world price (Pw). The international supply of textiles in the domestic market will now be represented by the horizontal line PwSw. This indicates that any quantity of textiles can be imported and therefore supplied at the world price (Pw). The

CH A P T ER 5 D E M A N D AND S UPPLY IN ACT ION

97

FIGURE 5-16 The impact of a specific import tariff

FIGURE 5-15 The impact of a production quota

P

P D

Q

P0

Price of textiles

rice

P1 0

P2

Q

Q0

Ed Pd Et

Pt

Ew

Pw

D 0

S

D

Q

uan i y

The demand and supply curves are DD and SS respectively. The equilibrium price is P0 and the equilibrium quantity Q0. A production quota of QM is then introduced, lower than Q0. The supply curve effectively becomes QMQM. The price to the consumers rises to P1 and the cost to the producers becomes P2 per unit.

Sw D

S

Q Q1

Q2

Q3

Q4

Q5

Quantity of textiles

The original demand and supply of textiles before international trade are represented by DD and SS. As indicated by Ed, the domestic price is Pd and the quantity exchanged is Q3. With the introduction of international competition the price falls to the world price Pw. The new equilibrium is Ew, indicating an equilibrium quantity of Q5. The world supply of textiles is represented by PwSw. With the introduction of a specific tariff, the domestic price increases to Pt. The new equilibrium is Et. The equilibrium quantity is Q4, of which Q2 is produced domestically. Domestic production increases and the volume of imports falls.

domestic price for textiles will thus fall to the world price. At the lower price the quantity of textiles demanded increases to Q5. The new equilibrium point is indicated by Ew. The equilibrium price is Pw, and the equilibrium quantity is Q5. Domestic production has fallen from Q3 to Q1. South African producers who cannot compete at a price of Pw are eliminated from the market. Imports are represented by the difference between Q5 and Q1. Suppose the government is perturbed about the loss of production and employment in the textile industry, as well as by the increase in imports, and therefore decides to impose a specific tariff on imported textiles. In Figure 5-16, the tariff is indicated by the difference between Pt and Pw, with Pt being the domestic price of textiles after the introduction of the tariff. The new equilibrium position is indicated by Et. The higher price of textiles reduces the quantity demanded from Q5 to Q4. At the same time the higher price stimulates the domestic production of textiles, and the quantity produced domestically increases to Q2. The difference between Q4 and Q2 represents the quantity imported, which is now smaller than before the imposition of the tariff. The imposition of the tariff raises domestic production (and employment) and reduces the quantity of imports. It also raises revenue for government, but raises the price of the product. 䡲 THE WELFARE EFFECTS OF AN IMPORT TARIFF The welfare costs of a tariff can be explained with the aid of a modified version of Figure 5-16. In Figure 5-17 all the symbols have the same meaning as in Figure 5-16. Prior to the imposition of the tariff, consumers could purchase quantity Q5 at the world price (Pw). After the imposition of the tariff, they have to pay a price Pt (ie the world price plus the tariff) for the same quantity. The imposition of the tariff thus causes them to increase their spending by PtABPw, compared to what they were spending prior to the tariff, where PtABPw = PtAQ40⫺PwBQ40. The question now is who receives the extra amount (represented by the rectangle PtABPw) that consumers pay. A part goes to government, whose revenue from

98

C HA P T E R 5 DEMA ND A ND SUPPLY I N A CT I ON

FIGURE 5-17 The welfare costs of a tariff P S

D

Price of textiles

the tariff is equal to the tariff per unit (ie Pt⫺Pw) multiplied by the quantity of units imported (ie Q4⫺Q2). The transfer from consumers to government is thus illustrated by the rectangle FABG. Part of the increased consumer payments goes to firms as extra profits. After the imposition of the tariff, domestic producers receive more for their products, first, because they sell more, and second, because they are receiving a higher QSJDF 5IF mSNT SFWFOVF JODSFBTFT GSPN PwEQ1 to 0PtFQ2. Part of this increase, namely Q1EFQ2 (ie the area under the supply curve), is required to meet the costs of supplying a greater quantity (Q2) than before (Q1). The rest of the gain, however, represented by the area PtFEPw, consists of an increase in profits. What about area X? This is part of the additional consumer payments but it is neither revenue for government nor extra profits for firms. Triangle X thus represents a net cost to society – it is the cost of supporting inefficient firms. Area Y also represents a net loss to society. Prior to the imposition of the tariff, it was part of the consumer surplus XJUIPVUBGGFDUJOHUIFEPNFTUJDQSPEVDFSTTVSQMVT "GUFSUIF imposition of the tariff, society loses this benefit (because the amount of textiles purchased by consumers has declined). The imposition of a tariff thus results in transfers from one part of the economy to another as well as net costs to society. The net costs are indicated by the two shaded triangles. They represent pure waste or the deadweight loss to society.

F

Pt Increase in profits X

A Tariff revenue

Y

World price plus tariff C World price

Pw

E

G

B D

S 0

Q Q1

Q2

Q4

Q5

Quantity of textiles per period

The imposition of a tariff results in transfers and net social losses. The tariff raises the domestic price from Pw to Pt and as a result consumers have to pay Pt ABPw more for quantity Q4 than before the imposition of the tariff. FABG represents a transfer to government and Pt FEPw a transfer to firms (in the form of extra profits). Triangles X and Y represent pure waste and net social losses, that is, the deadweight loss of the tariff.

5.6 Agricultural prices The prices of agricultural products generally fluctuate much more than the prices of manufactured goods. Why is this the case? The answer lies in the supply conditions. The supply of agricultural products varies from season to season and is affected by the weather, by disease, and by the fact that many products are perishable and therefore cannot be stored for long periods. As supply varies (illustrated by shifts of the supply curve), prices vary, even if demand conditions (illustrated by the demand curve) remain unchanged. These fluctuations may be intensified by the reaction of farmers, particularly in the case of annual crops. Suppose, for example, that the price of potatoes increases sharply in Year 1 as a result of a bad harvest. The high price of potatoes induces existing potato farmers to plant more potatoes in Year 2 and also induces other farmers to plant potatoes instead of alternative crops. If the weather and other market conditions in Year 2 are normal, the result will be a significant increase in the supply of potatoes in Year 2 and a fall in the price of potatoes, ceteris paribus. The extent of the price decline may actually leave potato farmers worse off than they would have been if the supply of potatoes had not increased. This example illustrates the fallacy of composition, that is, the mistake of assuming that the whole is always equal to the sum of the parts. An individual potato farmer, for example, may improve his position by producing more potatoes, but if all farmers do the same, potato farmers (as a group) may end up being worse off than before. This is illustrated in Figure 5-18. In the figure the demand and supply in Year 1 are represented by DD and S1S1. The equilibrium price is P1, the equilibrium quantity is Q1BOEGBSNFSTUPUBMJODPNFGSPNQPUBUPFTJTSFQSFTFOUFECZUIFBSFBP1E1Q1 (ie the price (P1) times the quantity sold (Q1)). Expecting high prices for potatoes, farmers increase their supply of potatoes to S2S2 in Year 2. With demand unchanged, the quantity sold increases to Q2 but the price falls to P2'BSNFSTUPUBM income from potatoes in Year 2, represented by the area 0P2E2Q2, is lower than in Year 1 (ie 0P1E1Q1 > 0P2E2Q2). As a group they are thus worse off in Year 2 than in Year 1, despite having produced and sold more potatoes.

CH A P T ER 5 D E M A N D AND S UPPLY IN ACT ION

99

FIGURE 5-18 An increase in supply as a result of an expected high price of potatoes

FIGURE 5-19 Self-fulfilling expectations P

P

D'

S1

S2

S'

D

S

P2

P1

Price of gold

Price of potatoes per kg

D

E1

P2

E2

P1

S'

D' D

S

S1 0

S2

D

Q

Q1 Quantity of gold

Q Q1 Q2 Quantity of potatoes per period

DD represents the demand for potatoes and S1S1 the supply of potatoes in Year 1 (when the harvest was bad). The equilibrium price and quantity are P1 and Q1 respectively. Farmers expect prices to be high in Year 2 as well and plant more potatoes. S2S2 represents the supply of potatoes in Year 2. The equilibrium quantity increases to Q2 but the price falls to P2. Farmers’ total income from potatoes in Year 2 (0P2E2Q2) is lower than in Year 1 (0P1E1Q1).

The original demand and supply of gold are represented by DD and SS respectively. The price is P1 and the quantity exchanged is Q1. If all market participants expect the price of gold to increase, the suppliers will hold back the supplies, illustrated by a leftward shift of the supply curve to S1S1, and those on the demand side will increase the demand for gold, illustrated by a rightward shift of the demand curve to D1D1. As a result the price of gold rises immediately to P2, simply because there is a general expectation that the price will rise.

5.7 Speculative behaviour: self-fulfilling expectations *OUIFQSFWJPVTFYBNQMFXFJODPSQPSBUFEGBSNFSTFYQFDUBUJPOTJOPVSBOBMZTJT5IJTJTBOFYBNQMFPGspeculation, which can be defined as the behaviour of looking into the future and making buying and selling decisions based on expectations (or predictions). When all the participants in a market expect that the price of the product will move in a certain direction and they all incorporate this expectation in their decisions, the expected movement will be realised almost immediately (provided the product is of such a nature that purchases or supplies can be brought forward or postponed easily). This is an example of self-fulfilling expectations. To explain this phenomenon, let us look at the international gold market. If all participants in the gold market expect the price of gold to increase significantly, everyone will try to purchase as much gold as possible before the price goes up. At the same time, the suppliers of gold will hold back their supplies as long as possible. In Figure 5-19, DD and SS represent the original demand and supply of gold. The equilibrium price is P1 and the quantity exchanged is Q1"HFOFSBMFYQFDUBUJPOPGBQSJDFJODSFBTFXIJDIJTJODPSQPSBUFEJOUPQBSUJDJQBOUTEFDJTJPOTXJMM increase demand to D1D1 and reduce supply to S1S1. The result is an immediate increase in the price to P2. The POMZSFBTPOGPSUIJTJODSFBTFJTUIFFYQFDUBUJPOUIBUUIFQSJDFXJMMJODSFBTF*OUIJTDBTF UIFSFGPSF UIFQBSUJDJQBOUT expectations are fulfilled. The same type of effect can occur when everyone expects the price of gold to fall and they incorporate this expectation into their decisions. Other markets in which self-fulfilling expectations can occur include other

100

C HA P T E R 5 DEMA ND A ND SUPPLY I N A CT I ON

international commodity markets (eg the markets for platinum, silver and maize), the stock market (eg the JSE), the capital market (in which long-term securities are traded) and the foreign exchange market (in which currencies are traded). These markets are all speculative markets in which expectations play an important role. Self-fulfilling FYQFDUBUJPOTDBOOPUPDDVSJOBMMNBSLFUToJONBOZNBSLFUTTVQQMZDBOOPUBEKVTUJOTUBOUBOFPVTMZBOEJOWFOUPSJFT of the product cannot be hoarded. Even in the markets where self-fulfilling expectations may occur, the various participants usually have different expectations, with the result that changes in demand, supply and price are unpredictable. Nevertheless, this example serves to emphasise the importance of expectations and explains why certain prices sometimes move in a particular direction for no apparent reason.

5.8 Concluding remarks In this chapter we showed how the tools of demand and supply can be used to analyse real world situations. We focused on the direction of change. By now you have probably realised that the impact of a given change in demand or supply on the equilibrium price and quantity (ie the magnitude of the change) will depend on the shape of the supply and demand curves. The information we require is contained in the price elasticity of supply or demand, which is examined in the next chapter.

IMPORTANT CONCEPTS

Change in demand Change in supply Market shortage (excess demand) Market surplus (excess supply) Maximum prices (price ceilings) Minimum prices (price floors) Rationing

Black market Price control Rent control Deadweight loss Welfare costs Administered prices Subsidies

CH A P T ER 5 D E M A N D AND S UPPLY IN ACT ION

Taxes Quotas Import tariffs Agricultural prices Speculative markets Self-fulfilling expectations

101

Points to ponder The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Practical men, who believe themselves to be quite exempt from any intellectual influences, are usually the slaves of some defunct economist. Madmen in authority, who hear voices in the air, are distilling their frenzy from some academic scribbler of a few years back. I am sure that the power of vested interests is vastly exaggerated compared with the gradual encroachment of ideas. Not, indeed, immediately, but after a certain interval; for in the field of economic and political philosophy there are not many who are influenced by new theories after they are twenty-five or thirty years of age, so that the ideas which civil servants and politicians and even agitators apply to current events are not likely to be the newest. But, soon or late, it is ideas, not vested interests, which are dangerous for good or evil. J OH N MAYNA R D K EYN ES (The general theory of employment, interest and money: 383)

The basic problems of economics are simple; the hard part is to recognize simplicity when you see it. The next hardest part is to present simplicity as common sense rather than ivory tower insensitivity. H A R RY G JOH N SON (“The Study of Theory”, American Economic Review, Papers and Proceedings, May 1974: 324)

Science when well digested is nothing but good sense and reason. STAN I S L AU S

C HA P T E R 5 DEMA ND A ND SUPPLY I N A CT I ON

6

Elasticity

Chapter overview 6.1 Introduction 6.2 A general definition of elasticity 6.3 The price elasticity of demand 6.4 Other demand elasticities 6.5 The price elasticity of supply 6.6 Elasticity: a summary Important concepts

The elasticity (or responsiveness) of demand in a market is great or small according as the amount demanded increases much or little for a given fall in price, and diminishes much or little for a given rise in price. ALFRED MARSHALL

All demand curves are inelastic. All supply curves are inelastic too. GEORGE STIGLER

Economics is about what everyone knows in a language nobody understands. ANONYMOUS

Learning outcomes Once you have studied this chapter you should be able to 䡲 define elasticity 䡲 explain the meaning and significance of price elasticity of demand 䡲 distinguish between five categories of price elasticity of demand 䡲 explain the determinants of price elasticity of demand 䡲 define income elasticity and cross elasticity of demand 䡲 explain the meaning and significance of price elasticity of supply

In this chapter we focus on the responsiveness of the quantity demanded and the quantity supplied to changes in price and other determinants of the quantity demanded and the quantity supplied. By now we know how the equilibrium price and quantity in the market will respond to changes in demand and supply. But what will the absolute or relative sizes of the changes in price and quantity be? By how much, for example, will the equilibrium price increase if supply decreases? And by how much will the equilibrium quantity change? What will happen to the total revenue of the suppliers, which is equal to the average price per unit multiplied by the quantity sold? Will it fall or will it increase? Will suppliers benefit from higher prices or from lower prices, bearing in mind that the quantity demanded will probably react to a price change? What determines the responsiveness of the quantity demanded to changes in price? By how much does the quantity demanded respond to changes in income or changes in the prices of substitutes or complements? And what about supply – how responsive is the quantity supplied to changes in price and what determines this responsiveness? These are the questions that are examined in this chapter. We start with a general definition of elasticity. This is followed by an analysis of the price elasticity of demand, which constitutes the main part of the chapter. In the subsequent sections we examine the income elasticity of demand, the cross elasticity of demand and the price elasticity of supply. 103

6.1 Introduction Demand and supply curves are among the most useful analytical tools in economics. The reasons for this are that we can use demand and supply to: t explain a number of economic phenomena (eg how the price of a product is determined) t predict what will happen if an economic variable changes (eg what will happen to the price of a product if the price of a substitute for that product changes) t BOBMZTFUIFFGGFDUTPGpolicy decisions (eg what will happen to the price of cigarettes, the quantity exchanged and tax revenue if the tax on cigarettes is raised) Up to now we have concentrated on analysing the direction of change when supply or demand changes. But economists, business people and the government are also interested in the magnitude of the change. By how much will price and quantity change if demand or supply changes? How will a change in the price of a good or service affect the total amount that consumers plan to spend on that particular good or service? Will the change in the quantity demanded be proportionally larger or smaller than the change in the price? Will it be profitable for the suppliers of a product to raise the price of the product, or should they rather lower it? What will the relative impact on price and quantity be if price control were to be imposed on a particular product? These are some of the many questions that economists are interested in, but which we can answer only if we know how responsive the quantity demanded and the quantity supplied are to price changes. In other words, we want to know by how much the quantity demanded and the quantity supplied will change in response to changes in price. In technical terms we say that information is required about the price elasticity of demand and supply. But what does elasticity mean?

6.2 A general definition of elasticity Elasticity is a measure of responsiveness or sensitivity. When two variables are related, one often wants to know how sensitive or responsive the dependent variable is to changes in the independent variable. We know, for example, that the size of the maize crop is dependent on rainfall. But how sensitive or responsive is the size of the maize crop to (say) a one per cent change in rainfall? In economics there are many cause-effect relationships which raise similar questions. How responsive is investment spending to changes in the interest rate? How responsive is government’s tax revenue to changes in taxpayers’ income? How responsive is the quantity of labour supplied to changes in the wage rate? How responsive is the demand for imports to changes in domestic income? The list is almost endless. In each case we are interested in the responsiveness or sensitivity of a dependent variable to changes in an independent variable. The measure of such responsiveness or sensitivity is called elasticity. Elasticity can be formally defined as the percentage change in a dependent variable (the one that is affected) if the relevant independent variable (the one that causes the change) changes by one per cent. This is obtained by dividing the percentage change in the dependent variable by the percentage change in the independent variable: percentage change in dependent variable elasticity= ––––––––––––––––––– percentage change in independent variable In the rest of this chapter we introduce four types of elasticity: t UIFQSJDFFMBTUJDJUZPGEFNBOE t UIFJODPNFFMBTUJDJUZPGEFNBOE t UIFDSPTTFMBTUJDJUZPGEFNBOE t UIFQSJDFFMBTUJDJUZPGTVQQMZ The most important of these is the price elasticity of demand, to which we now turn. Once we have explained the price elasticity of demand in some detail, we deal briefly with the other three.

6.3 The price elasticity of demand In Chapter 4, we expressed the market demand curve as: Qd = f(Px, Pg, Y, T, N, … )....................................(6-1) Price elasticity of demand is concerned with the sensitivity of the quantity demanded to a change in the price of the product. Thus, we examine the relationship Qd = f(Px) ceteris paribus. 104

C HA P T E R 6 E L A ST I CI T Y

In the case of a demand curve the dependent variable is the quantity demanded and the independent variable is the price of the product. The price elasticity of demand is the percentage change in the quantity demanded if the price of the product changes by one per cent, ceteris paribus. This is obtained by dividing the percentage change in the quantity demanded by the percentage change in the price of the good or service concerned. Using the symbol ep for the price elasticity of demand, we therefore write: ep=

percentage change in the quantity demanded of a product –––––––––––––––––––––––––––––– percentage change in the price of the product

For example, if the price of the product changes by 5 per cent and this results in a 10 per cent change in the quantity demanded, ceteris paribus, then ep = 10 per cent ÷ 5 per cent = 2. This implies that a one per cent change in the price of the product will lead to a two per cent change in the quantity demanded. In Chapter 5 we considered shifts of demand and supply. For example, as shown in Figure 6-1(a), a rightward shift of the supply curve will lead to a decrease in the price from P1 to P2, and an increase in the quantity demanded at equilibrium from Q1 to Q2. But we also want to know by how much the price and the quantity will change. To determine this, we need information about the price elasticity. With price elasticity of demand we measure the percentage change in quantity demanded that results from a percentage change in the price. In other words, how sensitive the quantity demanded is to a change in the price. This sensitivity of the quantity demanded to a change in the price will depend on the slope of the demand curve. In Figure 6-1(b) (drawn to the same scale as Figure 6-1(a)) we start at the same point and the supply curve shifts with the same magnitude as in Figure 6-1(a), but since the demand curve is steeper, the change in quantity demanded is smaller (and the change in price larger). The price elasticity of demand is very important for businesses. For example, if they decrease the price of a product or service, they know the quantity demanded will tend to increase, as stipulated in the law of demand. But by how much will the quantity demanded increase? Likewise, if they increase the price, the quantity demanded will tend to decrease. But by how much? If firms are rational, they will want to maximise profit, and the change in the quantity demanded and sold will directly influence their revenue and thus their profit. The answers to these questions are provided by analysing the elasticity of demand. Some important aspects and implications of the definition of price elasticity of demand must be emphasised: t Elasticity is calculated by using percentage changes, which are relative changes, not absolute changes. We cannot use absolute changes in prices and quantities because prices are expressed in monetary units, while FIGURE 6-1 The impact of different demand elasticities on the equilibrium price and quantity (a)

ela i ely elas ic demand cur e

(b)

P

ela i ely inelas ic demand cur e

P S

D

S

P1 P2

E1

1

rice

rice

D

2

P1 E3

P3 D S S'

D 0

Q Q1 Q2 uan i y

Q Q1 Q3 uan i y

In (a) the original demand and supply curves are DD and SS respectively. The original equilibrium is at E1, indicating a price P1, and a quantity Q1. If the supply increases to S'S', the equilibrium changes to E2 corresponding to a price P2 and a quantity Q2. In (b) the original equilibrium is the same as in (a), but the demand curve is steeper. If the supply curve shifts by the same magnitude as in (a), the new equilibrium E3 differs from E2 in (a). In (b) the reduction in price is greater and the increase in quantity is smaller than in (a). The responsiveness of demand to changes in price (illustrated here by the slope of the curve) is thus clearly important. Note that such a comparison is valid only if the same scale, the same original equilibrium and the same shift of supply are used in both cases.

CH A P T ER 6 E L A S T I C I TY

105

quantities are expressed in physical units. But if we use percentage changes, the units in which prices and quantities are measured do not affect the result. Prices may be measured in rands, cents, dollars, euros, yen or any other currency unit, and quantities may be measured in bags, boxes, cartons, bottles, kilograms, pounds, litres, gallons, metres, yards or any other unit of measurement. t 5IFQSJDFFMBTUJDJUZPGEFNBOEJTUIFSBUJPPGUIFQFSDFOUBHFDIBOHFJOUIFRVBOUJUZEFNBOEFEUPUIFQFSDFOUBHF change in price. This ratio is called the elasticity coefficient, which is simply a number and is not measured in units, percentages or anything else. t Elasticity coefficients enable us to compare how consumers react to changes in the prices of different goods and ser vices, such as matches, motorcars, meat, petrol and university tuition. We cannot compare a change in the absolute quantity of matches demanded with a change in the number of motorcars demanded. We also cannot compare the impact of, say, a R1 change in the price of matches with the impact of a R1 change in the price of a motorcar. A R1 change in the price of a box of matches is a massive change, while a R1 change in the price of a motorcar is negligible. But we can compare the elasticity coefficient for matches with the elasticity coefficient for motorcars, which gives us a comparison between the sensitivity of each to changes in price. t Strictly speaking, the measured price elasticity of demand has a negative sign, since the change in the price of a product and the change in the quantity demanded move in opposite directions. When the price increases, the quantity demanded falls and when the price falls, the quantity demanded increases. This problem is sometimes overcome by including a minus sign in the definition of price elasticity of demand, but this is a cumbersome approach. In this book we ignore the negative sign and simply concentrate on the absolute value of the price elasticity of demand. When we say that the price elasticity of the demand for tomatoes is 0,5, we mean that a one per cent increase in the price of tomatoes will lead to a 0,5 per cent decrease in the quantity demanded (or that a one per cent decrease in the price of tomatoes will lead to a 0,5 per cent increase in the quantity demanded).

Calculating price elasticity of demand To calculate the price elasticity of demand we have to calculate the percentage change in the quantity demanded and divide it by the percentage change in the price of the product. If we denote the quantity demanded by Q, and the change in quantity demanded by ΔQ, then percentage change in 'Q = ––– u100 quantity demanded Q Similarly, if we use the symbols P and ΔP for the price of the product and the change in price, then percentage change in 'P = ––– u100 price of the product P Thus, price elasticity of demand (ep) =

percentage change in quantity demanded percentage change in price of product

Q Q 100 = Q = Q P P 100 P P Q P = Q P ep =

Q P P Q

(since the 100s cancel out)

........................................................(6-2)

The slope of a linear demand curve is given by the change in price (ΔP) divided by the change in quantity (ΔQ). The first part of the right-hand side of Equation 6-2 (ie ΔQ/ΔP) thus represents the inverse of the slope of a linear demand cur ve. Since the slope of a straight line is constant, the inverse of the slope is also constant. The second part of the right-hand side of Equation 6-2 (ie P/Q) represents the ratio between the price (P) and the quantity (Q) at a point on the demand curve. Since this ratio varies along the demand curve, it follows that the price elasticity of demand will be different at each point on the demand curve. The elasticity coefficient calculated at a point on a demand curve is called point elasticity (in contrast to arc elasticity, which is explained below). If the price change is relatively small, the point elasticity formula (Equation 6-2) may be used, but if there are larger fluctuations in the price a different formula, called the arc elasticity formula, should be used. To calculate arc elasticity, we use the average of the two quantities and the average of the two prices as a basis for calculating the percentage change. The reason for using the average is explained in Box 6-1. 106

C HA P T E R 6 E L A ST I CI T Y

The formula for calculating arc elasticity is (Q2 – Q1)/(Q1 + Q2) ep = ––––––––– ................................(6-3) (P2 – P1))/(P1 + P2) We ignore the negative sign again by taking the absolute differences between Q2 and Q1 and between P2 and P1.

BOX 6-1 CALCULATING ARC ELASTICITY Suppose it is established that if the price of a packet of chips is R4, then 100 packets are demanded and if it costs R6, then 50 packets are demanded. We thus have P1 = 4, Q1 = 100; P2 = 6, Q2 = 50. What is the percentage difference between the two prices? The answer depends on the direction of the change. The absolute difference between 4 and 6 is 2, but the percentage difference depends on whether we take 4 or 6 as the basis for calculating the percentage. If we take 4, the answer is 50% (= 2/4 u 100), but if we take 6, the answer is 33,3% (= 2/6 u 100). Likewise, the percentage change in the quantity will depend on whether we take 100 (Q1) or 50 (Q2) as the basis for the calculation. The absolute difference is 50 but the percentage difference will be 50% if we take Q1 as the basis (= 50/100 u 100) or 100% if we take Q2 as the basis (50/50 u 100). To avoid obtaining different possible answers we take the average (or midpoint) of the two prices and the average (or midpoint) of the two quantities as the bases for our calculation We thus use (4 + 6)/2 = 5 as the basis for calculating the percentage change in the price and (100 + 50)/2 = 75 as the basis for calculating the percentage change in the quantity. We know that ep =

percentage change in quantity demanded -------------------------––––––––––---------------------------------–-––––– percentage change in price

The formula for calculating arc elasticity is (Q2 – Q1)/(Q1 + Q2)/2 ep = ––––––––––––––––––––– (P2 – P1)/(P1 + P2)/2 Since we have percentages above and below the line we do not have to multiply the expressions above and below the line by 100. The 100s cancel out. The 2s also cancel out and can therefore be dropped, as in Equation 6-3 in the text. For further clarity, consider the following example: Suppose the following combinations represent two points on a demand curve: Point 1:P1=10;Q 1=17 Point 2:P2=8;Q 2=19 These points are shown in the following diagram: P D

Price

(P1) 10

Point 1

9 (P2)

Point 2

8

7 0

Q 15

16

17 (Q1)

18

19 (Q2)

Quantity

CH A P T ER 6 E L A S T I C I TY

107

To calculate the arc elasticity between these two points we use the formula in Equation 6-3: ep =

(Q2 − Q1 ) (Q1 + Q2 ) (P2 − P1 ) (P1 + P2 )

Above the line we have the difference between the two quantities divided by their sum and below the line we have the difference between the two prices divided by their sum. Thus ep

1 9 < 1 7 1 7 1 9 2 36 8 < 1 0 1 0 8 2 1 8

(remember, we ignore the negative sign)

2 2 2 18 1 8 = 0, 5 36 1 8 36 2 2

Price elasticity of demand and total revenue (or total expenditure) The price elasticity of demand can be used to determine by how much the total expenditure by consumers on a product (which is also the total revenue of the firms producing that product) changes when the price of the product changes. This is probably the most important reason why economists, business people and policymakers are so interested in information concerning the price elasticity of demand. The total revenue (TR) accruing to the suppliers of a good or service (or the total expenditure by the consumers) is equal to the price (P) of the good or service multiplied by the quantity (Q) sold. We know that there is an inverse relationship between the quantity demanded (Q) and the price of a product (P). Any change in price leads to a change in the quantity demanded in the opposite direction to the change in price. The effect of a price change on total revenue will thus depend on the relative sizes of the price change and the change in the quantity demanded. t *G UIF DIBOHF JO QSJDF P leads to a proportionately greater change in quantity demanded Q (ie if the price elasticity of demand is greater than one), total revenue TR (= PQ) will change in the opposite direction to the price change. t *GUIFDIBOHFJOQSJDFMFBETUPBOFRVJQSPQPSUJPOBMDIBOHFJOUIFRVBOUJUZEFNBOEFE JFJGUIFQSJDFFMBTUJDJUZPG demand is equal to one), total revenue will remain unchanged. t *GUIFDIBOHFJOQSJDFMFBETUPBQSPQPSUJPOBMMZTNBMMFSDIBOHFJOUIFRVBOUJUZEFNBOEFE JFJGUIFQSJDFFMBTUJDJUZ of demand is smaller than one), total revenue will change in the same direction as the price change. Much of the rest of our discussion of the price elasticity of demand is concerned with these important relationships. 䡲 A NUMERICAL EXAMPLE We now use a numerical example to show how changes in total revenue are related to the price elasticity of demand. Suppose the first two columns of Table 6-1 represent the demand schedule for cappuccinos in a particular town in a certain period. The first column shows the price of cappuccinos P, the second column the quantity demanded (and sold) Q at each price and the third column the total revenue (TR = P ⫻ Q) at each price. The last column shows the price elasticity (point elasticity) of demand ep at each point (which we have calculated using Equation 6-2). The demand curve corresponding to the demand schedule of Table 6-1 is shown in Figure 6-2(a). The price elasticity of demand will be equal to one at the point on the demand curve that is exactly midway between the intersections with the price and quantity axes. In this example the midpoint is at a price of R10,00 and a quantity of 10 000. At any point on the demand curve above the midpoint the price elasticity of demand will be greater than one, and at any point below the midpoint it will be smaller than one. (You can verify these statements by calculating the point elasticity of demand at various points along the demand curve, using Equation 6-2 and the information in Table 6-1.) In Figure 6-2(b) we show the total revenue (TR) at each quantity of cappuccinos sold. As the price of cappuccinos falls, and the quantity of cappuccinos demanded (and sold) increases, so the total revenue (TR) rises at first, reaches a maximum and then declines.

108

C HA P T E R 6 E L A ST I CI T Y

TABLE 6-1 The demand for cappuccinos and total revenue from cappuccino sales Price per cappuccino (R) P

Quantity demanded Q

Price elasticity of demand ep

20 18

0 ̈́

0 ̈́

– 9,0

16

̈́

̈́

4,0

14

̈́

̈́

2,3

12

̈́

̈́

1,5

10

̈́

̈́

1,0

́

̈́

̈́

0,7

́

̈́

̈́

0,4

́

̈́

̈́

0,3

̈́

0,1

́

́

̈́

́

̈́

FIGURE 6-2 The relationship between price elasticity of demand and total revenue (a) P

20 rice o cappuccinos ( )

Total revenue from cappuccino sales (R) TR=PQ

18 p

1

14 p

10

Table 6-1 and Figure 6-2 illustrate three important results: s !SLONGASTHEPRICEELASTICITYOFDEMANDISGREATER than one, total revenue TR (or the total expenditure by consumers) increases as the quantity sold Q increases. s 42REACHESAMAXIMUMWHENTHEPRICEELASTICITYOF demand is equal to one. s 7HEN THE PRICE ELASTICITY OF DEMAND IS LESS THAN one, TR falls as the quantity sold Q increases.

1

p

6

The relationship between the price elasticity of demand and total revenue can be explained further by distinguishing five different categories of price elasticity of demand.

1

2

o al re enue rom cappuccinos ( )

Q 2

6

10

14

18 20

100000

80000

60000

40000

20000

Q 2 6 10 14 18 20 uan i y o cappuccinos ( ousands)

Panel (a) depicts the demand for cappuccinos and the price elasticity of demand (ep) along the curve, based on the data in Table 6-1. Panel (b) shows the corresponding total revenue (TR) from the sale of cappuccinos. When ep is greater than one, TR increases as the quantity of cappuccinos increases. When ep is equal to one, TR is at a maximum. When ep is less than one, TR falls as the quantity of cappuccinos increases. This relationship holds for all downwardsloping linear demand curves.

(b)

CH A P T ER 6 E L A S T I C I TY

109

Different categories of price elasticity of demand The following five categories of price elasticity of demand can be distinguished: t 1FSGFDUMZJOFMBTUJDEFNBOE ep = 0) t *OFMBTUJDEFNBOE ep lies between 0 and 1) t 6OJUBSJMZFMBTUJDEFNBOEPSVOJUBSZFMBTUJDJUZPGEFNBOE ep = 1) t &MBTUJDEFNBOE ep lies between 1 and ⬁) t 1FSGFDUMZFMBTUJDEFNBOE ep = ⬁) These five categories are illustrated in Figure 6-3. 䡲 PERFECTLY INELASTIC DEMAND Perfectly inelastic demand (which is unlikely to occur in the real world) refers to a situation where the price elasticity of demand is zero. A perfectly inelastic demand curve is represented by a vertical line parallel to the price axis, such as DD in Figure 6-3(a). This shows that consumers plan to purchase a fixed amount of the product, irrespective of its price. If the demand for a product is perfectly inelastic, the producers can raise their revenue by raising the price of the product. As explained earlier, the producers’ total revenue TR is equal to the price of the product P times the quantity sold Q (ie TR = P u Q). When P increases and Q remains constant, TR increases. 䡲 INELASTIC DEMAND Demand is said to be inelastic when the quantity demanded changes in response to a change in price, but the percentage change in the quantity is less than the percentage change in the price of the product. The value of the price elasticity of demand, or the elasticity coefficient, is thus greater than zero but smaller than one. In contrast to the case of perfect inelasticity, we cannot draw a linear demand curve (ie a straight line) which represents inelastic demand all along the curve. As explained earlier, the elasticity coefficient varies from point to point along any downward-sloping linear demand curve. Nevertheless, we use a steep curve, such as the one in Figure 6-3(b), to approximate an inelastic demand curve (bearing in mind that it is not fully accurate, as we explain in Box 6-3). If producers are faced with an inelastic demand for their product, they will have an incentive to raise the price of the product, since the percentage fall in the quantity demanded Q will be smaller than the percentage increase in the price P of the product. In other words, if the price of the product increases, the producers’ total revenue TR (= P u Q) will increase. By the same token there will be no incentive for the producers to drop the price of the product, since the increase in the quantity demanded will be proportionally smaller than the percentage decrease in the price, that is, their total revenue TR (= P u Q) will decrease. 䡲 UNITARILY ELASTIC DEMAND (UNITARY ELASTICITY) Unitary elasticity occurs when the percentage change in the quantity demanded is exactly equal to the percentage change in price. The elasticity coefficient is thus equal to one. Unitary elasticity is the dividing line between inelastic and elastic demand. It cannot be represented by a straight line demand curve, but those of you with a mathematical background will realise that a unitarily elastic demand curve can be represented by a rectangular hyperbola, as in Figure 6-3(c). If producers are faced with a unitarily elastic demand curve, they cannot raise their total revenue by decreasing or increasing the price of the product. In both cases the percentage change in the price will be exactly offset by a corresponding percentage change in the quantity demanded (in the opposite direction to the change in price). TR (= P u Q) will therefore remain unchanged. 䡲 ELASTIC DEMAND Demand is said to be elastic when a price change leads to a proportionally greater change in the quantity demanded, that is, when the elasticity coefficient is greater than one. An elastic demand curve cannot be represented by a unique downward-sloping linear demand curve, since the elasticity coefficient varies along such a curve. Nevertheless we use a relatively flat demand curve, such as the one in Figure 6-3(d), to represent an elastic demand curve (bearing in mind that it is not fully accurate). If producers are faced with an elastic demand for their product, they can increase their total revenue by lowering the price of the product. When the price of the product P decreases there will be a proportionally greater increase in the quantity demanded Q. Total revenue TR (= P u Q) will thus increase. An increase in total revenue should not, however, be confused with an increase in total profit. The impact on profit will also depend on the change in total cost. When faced with an elastic demand, producers will have no incentive to raise their prices, since the resulting decrease in the quantity demanded will be proportionally greater than the increase in the price of the product, so total revenue will fall. 110

C HA P T E R 6 E L A ST I CI T Y

FIGURE 6-3 The different categories of price elasticity of demand

䡲 PERFECTLY ELASTIC DEMAND A perfectly elastic demand curve has an elasticity coefficient of infinity and is depicted by a horizontal line, as in Figure 6-3(e). This curve shows that consumers are willing to purchase any quantity at a certain price (P1), but if the price is raised only fractionally, the quantity demanded falls to zero. An example of a perfectly elastic demand curve is provided in Chapter 10, where we discuss the position of an individual firm in a perfectly competitive market. The most important features of the five categories of price elasticity are summarised in Table 6-2. See also Box 6-2. CH A P T ER 6 E L A S T I C I TY

111

Determinants of the price elasticity of demand We have now defined the price elasticity of demand, shown how it is related to total revenue and identified five different categories of price elasticity of demand. But what are the determinants of the price elasticity of demand? Why are certain goods characterised by an inelastic demand while other goods have an elastic demand? What types of goods and services tend to have elastic demands and which tend to have inelastic demands? We now discuss some of the determinants of price elasticity and give some practical examples. In discussing each determinant we have to assume once more that all other things remain unchanged (ie we have to make the ceteris paribus assumption). In practice, however, all things can change. This means that the impact of one determinant can be neutralised by another determinant which works in the opposite direction. Moreover, different consumers or groups of consumers (eg poor and rich consumers) may respond differently to price changes. Therefore, in deciding whether the demand for a particular good or service will tend to be elastic or inelastic, all the relevant information must be considered (ie all the possible determinants have to be taken into account). 䡲 SUBSTITUTION POSSIBILITIES The availability of substitutes is undoubtedly the most important determinant of consumers’ reactions to a price change. The larger the number of substitutes and the closer (or better) the substitutes are, the greater is the price elasticity of demand, ceteris paribus. Goods and services with good substitutes (shown here in brackets) include beef (mutton), butter (margarine), taxi services (bus services, train services), hamburgers (hot dogs) and apples (pears). These goods and services will therefore tend to have an elastic demand. For example, if the price of a good with close substitutes increases, consumers will tend to switch to the substitutes, which become relatively cheaper. On the other hand, if a good has no close substitutes, like salt, petrol, electricity or certain medicines, demand will tend to be inelastic. 䡲 THE DEGREE OF COMPLEMENTARITY OF THE PRODUCT In the case of highly complementary goods (ie goods which tend to be used jointly with other goods rather than on their own) the price elasticity of demand tends to be low. Examples of goods with complements (shown here in brackets) include sugar (tea, coffee and many foodstuffs), motorcar tyres (motorcars), petrol (motorcars), salt (food) and golf balls (golf clubs). In many cases it may be argued that it is the absence of good substitutes, rather than the degree of complementarity, which is responsible for the inelastic demand of highly complementary goods. 䡲 THE TYPE OF WANT SATISFIED BY THE PRODUCT The price elasticity of the demand for necessities, like basic foodstuffs, electricity, petrol and medical care, tends to be lower than the price elasticity of luxur y goods and ser vices such as recreation, entertainment, swimming pools and luxury motor vehicles. There are no hard and fast rules to determine whether a particular good or service is a necessity or a luxury. All we can really say is that the demand for a product that is considered a necessity tends to be relatively inelastic, whereas the demand for a product that is considered a luxury tends to be relatively elastic. (See also the discussion on the income elasticity of demand in Section 6.4.) TABLE 6-2 Price elasticity of demand: a summary

112

Effect on total revenue (TR = PQ) when price (P) changes

Category

Meaning

Perfectly inelastic demand (ep = 0)

Q does not change when P changes

TR changes with P in the same direction as P there is thus an incentive for suppliers to raise prices

Inelastic demand (0 < ep < 1)

Percentage change in Q is smaller than percentage change in P

TR changes in the same direction as change in P there is thus an incentive for suppliers to raise prices

Unitarily elastic demand (ep = 1)

Percentage change in Q is equal to percentage change in P

TR remains unchanged

Elastic demand (1 < ep < f)

Percentage change in Q is greater than percentage change in P

TR changes in the opposite direction to change in P there is thus an incentive for suppliers to lower prices

Perfectly elastic demand (ep = f)

Indeterminate quantity (Q) demanded at given price (P); nothing demanded at a fractionally higher price

When P increases, Q falls to zero; TR therefore also falls to zero

C HA P T E R 6 E L A ST I CI T Y

BOX 6-2 PRICE ELASTICITY OF DEMAND, PRICE CHANGES AND CHANGES IN TOTAL REVENUE In any market the total revenue (TR) of the sellers is equal to the total spending (PQ) by the buyers. The relationship between price elasticity of demand (ep), changes in price (P) and changes in total revenue (TR = PQ) in the three non-extreme cases of price elasticity of demand (ie inelastic, unitarily elastic and elastic demand) can be illustrated as follows (note the length of the arrows): P

Q

P

TR

Q

TR unchanged

ep = 1

ep < 1 P

Q

TR

P

Q

TR

P

Q

TR

ep > 1 P

Q

TR unchanged

䡲 THE TIME PERIOD UNDER CONSIDERATION Demand tends to be more price elastic in the long run than in the short run. When the price of a product changes, ceteris paribus, consumers usually need time to adjust to the change in relative prices. In the 1970s, for example, the price of crude oil increased more than twenty-fold. In the short run consumers could do little about it and sales did not fall significantly. In due course, however, consumers switched to smaller, more fuel-efficient cars. Another example is the price elasticity of demand for airline tickets. Someone who has to fly somewhere at short notice does not have the opportunity to shop around for the best deal. In many cases he or she purchases the first available ticket without paying too much attention to the price. However, if someone in Gauteng plans to go on holiday to Cape Town in a few months’ time, he or she has plenty of time to compare the prices offered by different airline companies, as well as to compare the cost of flying with the cost of alternative modes of transport (train, bus, motorcar). The long-run demand for airline tickets will therefore be more price elastic than the short-run demand. The airline companies realise this and base their fare structure on the differences in price elasticity. The practice of charging different prices to different sets of customers according to differences in price elasticity is called price discrimination, which we discuss in Chapter 11. Empirical studies conducted in other countries have confirmed that demand curves tend to be relatively inelastic in the short run and significantly more elastic in the long run. 䡲 THE PROPORTION OF INCOME SPENT ON THE PRODUCT It is often argued that the greater the proportion of income spent on a product, the greater the price elasticity of demand will be (or that the smaller the proportion, the lower the price elasticity of demand will be). The expenditure on products such as matches, salt and paper clips constitutes a small share of a consumer’s budget, so it is argued that a price change will have a negligible effect on the quantity demanded. In many cases, however, the low price elasticity of demand can probably also be explained by the lack of substitutes, the degree of complementarity or the type of want that is satisfied. 䡲 OTHER POSSIBLE DETERMINANTS OF PRICE ELASTICITY OF DEMAND The following factors can also affect the price elasticity of demand: t The definition of the product. The broader the definition of the product, the smaller the measured price elasticity of demand will tend to be. This is again related to the substitution possibilities. Broader definitions reduce the number of possible substitutes. The price elasticity of the demand for food, for example, will be less than the price elasticity of demand for any particular type of food. Meat and beef is another example – the price elasticity of demand for beef is greater than the price elasticity of demand for meat. Similarly, the price elasticity of the demand for a particular motorcar will be greater than the price elasticity of the demand for motorcars. In the United States, for example, it was at one time estimated that the price elasticity of demand for Chevrolet motorcars was four times as great as the price elasticity of demand for motorcars in general. t !DVERTISING The price elasticity of demand for a particular brand of a product (eg Omo washing powder) will be greater than the price elasticity of demand for the product (washing powder). The reason again is that one brand (eg Omo) may be substituted by another (eg Surf). Producers spend large amounts of money on advertising and other forms of non-price competition, such as packaging, distribution and service, to develop a loyalty among consumers to their particular brands. In other words, they try to convince consumers that their particular products have no real substitutes. To the extent that they are successful, they reduce the price elasticity of demand for their brands. CH A P T ER 6 E L A S T I C I TY

113

BOX 6-3 ELASTICITY AND SLOPE

In the figure we show two demand curves, D1 and D2, which intersect at point A. At that particular point the price elasticity of demand curve D1 is greater than that of D2. Recall, from Equation 6-2, that ep = (ΔQ/ΔP) u (P/Q). Where the demand curves intersect, the price P and quantity Q are the same for both curves, ie P/Q is the same for both curves. But ΔQ/ΔP, the inverse of the slope, differs. It is greater for D1 than for D2 (since D2 has a greater slope than D1). The price elasticity of D1 at A is thus greater than the price elasticity of D2 at A. This is the only valid graphical comparison of the price elasticity of two downwardsloping linear demand curves.

Price per unit

Elasticity is often confused with slope. From the discussion in the text it should be clear, however, that elasticity and slope are not the same thing. Although the slope of a linear demand curve (or, rather, the inverse of the slope) forms part of the formula for the point elasticity of demand, we have seen that the price elasticity of demand varies from point to point along a linear demand curve. Except for the two extreme cases of perfectly elastic and perfectly inelastic demand, a demand curve with a constant slope represents a collection of price elasticities, varying from zero to infinity. Another reason why slope cannot be used to compare elasticities is that one can obtain demand curves with different slopes by varying the scales on the axes. Where different products are involved (eg beef and milk), different units of measurement are used. Therefore it is impossible to P compare the elasticity of the demand curves of different products (eg beef and milk) using a diagram. D2 D1 The only valid graphical comparison of the price elasticity of demand is to compare two demand curves for the same product at the point where they intersect. This is shown in the accompanying figure. A

Qd Quantity demanded per period

t Durability. The more durable the good, the more elastic the demand will tend to be, ceteris paribus. For example, if the price of washing machines or refrigerators increases, consumers may decide to keep their existing machines for a longer period than they had originally intended. Non-durable goods, like household cleaning materials, cannot be used more than once and therefore tend to have a more inelastic demand. t Number of uses of the product. It is sometimes argued that the greater the number of uses of a particular product, the greater the price elasticity of demand will tend to be. The argument is that substitutes may be available for certain of the uses. Electricity, for example, has a variety of uses. A rise in the price of electricity may cause consumers to switch to other means of cooking. Less important uses of electricity (such as heating) may be eliminated altogether. t !DDICTION Products that are habit forming (eg cigarettes, alcohol, drugs) will tend to have a relatively low price elasticity of demand. For consumers who are totally addicted, the demand may even be perfectly price inelastic. 䡲 THE COMBINED EFFECT OF THE DETERMINANTS As we mentioned earlier, there are no hard and fast rules as far as the determinants of the price elasticity of demand are concerned. Each of the determinants will probably have the effects that we have indicated, but only if viewed in isolation. Sometimes they all work in the same direction. Salt is the classic example: it has no real substitutes; it is a complement to many foodstuffs; it is essential; it is non-durable; and spending on salt comprises a small proportion of the average consumer’s income. It is therefore not surprising that the price elasticity of the demand for salt was estimated at about 0,1 in empirical studies in the United States.

114

C HA P T E R 6 E L A ST I CI T Y

In many cases, however, the various determinants counteract each other and the final result is therefore uncertain. For example, a television set is almost regarded as an essential product today. It has no close substitutes and has no alternative uses. On the other hand it is a durable good on which the consumer spends a significant portion of his or her income. In deciding whether the demand for a particular product is price elastic or inelastic, all the determinants, and the relative importance of each, must be considered. Usually, however, the substitutability of the product is the crucial factor. As we have indi-cated, many of the other determinants are related to the existence of substitution possibilities. No wide-ranging empirical investigation of price elasticity of demand has been conducted in South Africa, but in empirical studies undertaken in the United States the following goods and services have been generally found to have inelastic and elastic demands: t Inelastic demand (ep < 1): salt, matches, toothpicks, cigarettes, bread, milk, petrol, electricity, water, eggs, potatoes, meat, postage stamps, medical care, legal services, motorcar tyres t Elastic demand (ep > 1): motor vehicles, mutton, furniture, entertainment, restaurant meals, overseas holidays, butter, chicken, veal, apples, peaches Can you use the determinants that we have identified to explain each of these empirical results?

Applications Price elasticity of demand has many applications in economic analysis. Firms and policymakers require information about price elasticity when making pricing or policy decisions. For example, the distribution of the burden of excise taxes or import tariffs, or of the benefit of subsidies, depends on the price elasticity of demand. Firms also require information about how the quantity demanded will respond when the price of their good or service changes. Whenever demand and supply can be used to analyse a particular situation, price elasticity becomes important.

6.4 Other demand elasticities Elasticity is a measure of responsiveness which can be applied to any causal relationship between two variables. Since the quantity demanded of a product does not only depend on the price of a product, it is possible to calculate other demand elasticities as well. In this section we briefly examine two such demand elasticities: the income elasticity of demand and the cross elasticity of demand.

Income elasticity of demand The quantity demanded of a product depends on the income of the consumers. As consumers’ incomes rise, the quantity demanded usually increases, ceteris paribus. The question is, by how much will the quantity demanded change, relative to the change in income? The income elasticity of demand (ey) measures the responsiveness of the quantity demanded to changes in income. Applying our general definition of elasticity, it is defined as the ratio between the percentage change in the quantity demanded (the dependent variable) and the percentage change in consumers’ income (the independent variable), that is, percentage change in the quantity demanded of the product ey= –––––––––––––––––––––––––––––– percentage change in consumers’ income Income elasticity of demand may be positive or negative. A positive income elasticity of demand means that an increase in income is accompanied by an increase in the quantity demanded of the product concerned (or that a decrease in income is accompanied by a decrease in the quantity demanded). Goods with a positive income elasticity of demand are called normal goods. A negative income elasticity of demand means that an increase in income leads to a decrease in the quantity demanded of the good concerned (or that a decrease in income leads to an increase in the quantity demanded). Goods with a negative income elasticity of demand are called inferior goods. Normal goods are further classified as luxury goods or essential goods. When the income elasticity of demand is greater than one, that is, when the percentage change in the quantity demanded is greater than the percentage change in income, the good is called a luxur y good. When the income elasticity of demand is positive but less than one, that is, when the percentage change in the quantity demanded is smaller than the percentage change in income, the good is called an essential good. Information about the income elasticity of demand is important to the suppliers of goods and services. They want to know what will happen to the quantities demanded of the goods and services they supply as the incomes of consumers increase. In the 1960s, Japanese entrepreneurs assumed, quite correctly, that incomes in the industrial countries would increase rapidly. They therefore identified a number of goods with relatively high income elasticities of demand and were ready to supply them (eg electronic equipment and motorcars) when the CH A P T ER 6 E L A S T I C I TY

115

quantities demanded of these goods subsequently increased faster than the incomes of consumers in the industrial countries. On the other hand, the low income elasticity of demand of basic foodstuffs is one of the reasons why developing countries which export agricultural products fared relatively badly during the post-World War II economic boom. Consumers’ income increased, but the quantities of basic foodstuffs demanded did not increase to the same extent. In other words, the demand for these commodities did not keep pace with the growth in income and the demand for manufactured goods. Table 6-3 contains some examples of income elasticities of demand that have been calculated for South Africa. Although the table is somewhat dated, it contains some interesting results. Note how the income elasticities of demand tend to differ between high-income and low-income households. Can you explain the differences (eg why certain goods are luxuries to low-income households but necessities to high-income households)? Can you also explain why paraffin, candles and ordinary radios are inferior goods to low-income households?

Cross elasticity of demand The quantity demanded of a particular good also depends on the prices of related goods. The cross elasticity of demand measures the responsiveness of the quantity demanded of a particular good to changes in the price of a related good. Applying our general definition of elasticity, we can define the cross elasticity of demand (ec) as the ratio between the percentage change in the quantity demanded of a product (the dependent variable) and the percentage change in the price of a related product (the independent variable), that is,

TABLE 6-3 Some estimated income elasticities of demand in South Africa, 1985 Income elasticity of demand Item Brown/wholewheat bread Maize meal Rice Cakes and biscuits Meat Biltong Fresh fish Fresh milk Cheese Pure fruit juice Tea Women’s clothing Men’s clothing Paraffin Candles Transport Medical care Furniture Electrical equipment Ordinary radio Television set

High-income households

Low-income households

0,25 0,31 0,02 0,78 0,32 1,36 0,51 0,21 0,46 0,83 0,21 0,98 0,99 0,55 0,82 1,26 0,65 1,40 1,06 0,88 0,37

0,23 0,00 0,60 2,27 0,90 1,11 1,61 0,66 2,01 2,03 0,25 1,14 1,26 –0,51 –0,20 1,25 0,98 1,30 2,18 –0,56 1,65

Source: Loubser, M. 1990. Income elasticities of the demand for consumer goods and services. Research report No. 175. Pretoria: Bureau of Market Research (University of South Africa)

percentage change in the quantity demanded of product A ec= –––––––––––––––––––––––––––––– percentage change in the price of product B When two goods are unrelated (eg motorcar tyres and margarine) the cross elasticity of demand will be zero. In the case of substitutes (eg butter and margarine) the cross elasticity of demand is positive. A change in the price of the one product (eg butter) will lead to a change in the same direction in the quantity demanded of the substitute product. For example, when the price of butter increases, more margarine will be demanded, ceteris paribus, as consumers switch to the relatively cheaper margarine. In the case of complements the cross elasticity of demand is negative. A change in the price of the one product (eg motorcars) will lead to a change in the opposite direction in the quantity demanded of the complementary product (eg motorcar tyres). For example, if the price of motorcars falls, the quantity of motorcars demanded will increase and as a result more motorcar tyres will be demanded.

6.5 The price elasticity of supply We conclude this chapter by examining the price elasticity of supply. The price elasticity of supply measures the responsiveness of the quantity supplied of a product to changes in the price of the product. More formally, the price elasticity of supply (es ) is the ratio between the percentage change in the quantity supplied of a product (the dependent variable) and the percentage change in the price of the product (the independent variable), that is, percentage change in the quantity supplied of a product es= –––––––––––––––––––––––––––––– percentage change in the price of the product

116

C HA P T E R 6 E L A ST I CI T Y

Different categories of supply elasticity Since the quantity supplied usually increases as the price of the product increases (ie since there is a direct relationship between the variables), the price elasticity of supply is easier to interpret than the price elasticity of demand. As in the case of price elasticity of demand, five different categories of supply elasticity can be distinguished: t QFSGFDUMZJOFMBTUJDTVQQMZ es = 0) t JOFMBTUJDTVQQMZ es greater than 0 but smaller than 1) t VOJUBSJMZFMBTUJDTVQQMZ es = 1) (unitary elasticity) t FMBTUJDTVQQMZ es greater than 1) t QFSGFDUMZFMBTUJDTVQQMZ es = ∞) These five categories are illustrated in Figure 6-4. The supply curve in Figure 6-4(a) is perfectly inelastic. It has the same shape as a perfectly inelastic demand curve, indicating that the quantity supplied is unresponsive to (or independent of) changes in the price of the product. The supply curve in Figure 6-4(b) is an inelastic supply curve. Any upward-sloping linear supply curve which intersects the horizontal (quantity) axis has a positive elasticity of less than one (but greater than zero). This indicates that the percentage change in the quantity supplied is less than the percentage change in the price of the product. The supply curve in Figure 6-4(c) has unitary elasticity. Any upwardsloping linear supply curve which passes through the origin has an elasticity of one, indicating that the percentage change in the quantity supplied is equal to the percentage change in the price of the product. The supply curve in Figure 6-4(d) is an elastic supply curve. Any upward-sloping linear supply curve which intersects the vertical (price) axis has an elasticity greater than one but less than infinity. This indicates that the percentage change in the quantity supplied is greater than the percentage change in the price of the product. The supply curve in Figure 6-4(e) is perfectly elastic, indicating that any quantity can be supplied at a given price. It, too, has the same shape as a perfectly elastic demand curve.

The determinants of the price elasticity of supply Like the price elasticity of demand, the price elasticity of supply depends on the length of time that has elapsed since the change in price. In the short run, most supply curves are inelastic, as suppliers do not have sufficient time to respond to a price change. In the long run, however, they can adjust their levels of production in response to changes in price. An obvious example relates to the planting cycle of crops – if the maize price increases, farmers need a full growing season to adjust their production to the price increase. Inelastic short-run supply curves (such as the one illustrated in Figure 6-4(b)) may thus become elastic (like the one in Figure 6-4(d)) in the long run. In the United States it has been estimated, for example, that the short-run and long-run price elasticities of supply of fresh cabbage are 0,36 and 1,2 respectively. Similar results were obtained for all other fresh vegetables. Even factories and other production units cannot adjust immediately to price changes. For example, if the price of aluminium, steel, copper, platinum or gold increases, it may take months, if not longer, to increase production in response to the price increase. Supply may also be inelastic with regard to a decrease in price in the short run. A fall in the price of apples, for example, will not necessarily result in a rapid reduction in the quantity supplied. Farmers with apple orchards will probably still be forced to harvest and sell the apples at the lower price, rather than lose all their income. They will also not switch to other types of fruit since the price of apples will probably recover in subsequent years, that is, apart from the fact that the switch will take many years. The previous example suggests that price expectations are also an important determinant of supply elasticity. Expectations of higher prices will result in increased supply. By the same token, reductions in price which are regarded as temporary by producers will tend to lead to an inelastic response. However, if a price reduction is perceived by producers to be a long-term phenomenon, they will reduce their production capacity. In such conditions supply will tend to be more elastic. Other determinants of supply elasticity include the possibility of stockpiling the product and the existence of excess capacity. Products that can be stockpiled have a more elastic supply than perishable goods which cannot be stockpiled. Firms with excess production capacity will be able to respond more quickly to a price increase than firms that are operating at full capacity. Finally, the availability of inputs can also affect the ability of producers to respond to price increases. If essential inputs are not available, firms cannot increase their output in reaction to an increase in the price of their product.

CH A P T ER 6 E L A S T I C I TY

117

FIGURE 6-4 Different categories of price elasticity of supply

118

C HA P T E R 6 E L A ST I CI T Y

6.6 Elasticity: a summary Table 6-4 summarises the different elasticities explained in this chapter.

TABLE 6-4 Different elasticities: a summary Type

Definition

Possibilities

Percentage change in quantity demanded

ep > 1 ep < 1 ep = 1 ep = f ep = 0

Elastic Inelastic Unitarily elastic Perfectly elastic Perfectly inelastic

ec < 0 ec > 0 ec = 0

Complements Substitutes Independent goods

ey > 0 ey < 0 ey > 1 ey < 1

Normal good Inferior good Income elastic Income inelastic

es > 1 es < 1 es = 1 es = f es = 0

Elastic Inelastic Unitarily elastic Perfectly elastic Perfectly inelastic

Price elasticity of demand

–––––––––––––––––––––––––––––

Cross elasticity of demand

––––––––––––––––––––––––––––––––––––––

Percentage change in price

Percentage change in quantity demanded of one good Percentage change in price of another good

Income elasticity of demand

–––––––––––––––––––––––––––––

Price elasticity of supply

––––––––––––––––––––––––––––

Percentage change in quantity demanded Percentage change in income

Percentage change in quantity supplied Percentage change in price

Description

IMPORTANT CONCEPTS Elasticity Price elasticity of demand Elasticity coefficient Arc elasticity Total revenue (or expenditure) Perfectly inelastic demand

CH A P T ER 6 E L A S T I C I TY

Inelastic demand Unitarily elastic demand Elastic demand Perfectly elastic demand Slope and inverse of slope Determinants of price elasticity

Income elasticity of demand Normal and inferior goods Essential and luxury goods Cross elasticity of demand Price elasticity of supply Elastic and inelastic supply

119

Mainly microeconomics Octavius (a wealthy young Englishman): “I believe most intensely in the dignity of labour”. The chauffeur: “That’s because you never done any.” GEORG E B ER NA R D SHAW (M an an d Su p er man , A c t I I)

Three obviously rich businessmen in conversation at their club. One says: “As far as I’m concerned, they can do what they want with the minimum wage, just as long as they keep their hands off the maximum wage.” C ARTOON

The monopolists, by keeping the market constantly under stocked, by never fully supplying the effectual demand, sell their commodities much above the natural price. A DAM S M ITH

We might as well reasonably dispute whether it is the upper or the under blade of a pair of scissors that cuts a piece of paper, as whether value is governed by demand or supply. A LF R E D MA R SHA LL

The benefit which is derived from exchanging one commodity for another, arises in all cases, from the commodity received, not the commodity given. JA M E S M I LL (1821)

Producers want cheap labour but rich consumers. V ICTOR IA CH ICK

It is not economical to go to bed early to save the candles if the result is twins. C H I N E S E P R OVER B

Free trade, one of the greatest blessings in which almost any government can confer on a people, is in almost any country unpopular. LO R D MAC AU LEY

C HA P T E R 6 E L A ST I CI T Y

7

The theory of demand: the utility approach

Chapter overview 7.1 Utility 7.2 Marginal utility and total utility 7.3 Consumer equilibrium in the utility approach 7.4 Derivation of an individual demand curve for a product 7.5 Comments on the utility approach Important concepts

Learning outcomes Once you have studied this chapter you should be able to 䡲 䡲 䡲 䡲

define utility, marginal utility and weighted marginal utility explain the relationship between total, average and marginal values state the conditions for consumer equilibrium use weighted marginal utility to derive a demand curve

By the principle of utility is meant that principle which approves or disapproves of every action whatsoever, according to the tendency which it appears to have to augment or diminish the happiness of the party whose interest is in question. JEREMY BENTHAM

A person distributes his income in such a way as to equalise the utility of the final increments of all commodities consumed. WILLIAM STANLEY JEVONS

My first rule is never to buy anything you can’t make your children carry. BILL BRYSON

Boy sees girl off at door. Girl: “It’s been fun, John, but I think we have reached the diminishing marginal utility phase of our relationship.” CARTOON

I

n the discussion of demand and supply in the previous three chapters, we assumed that demand curves usually slope downward from left to right. This is in accordance with the law of demand, which states that the quantity demanded of a good will increase if the price of the good falls, and will decrease if the price rises, ceteris paribus. In this chapter and the next one we examine consumer behaviour in greater detail. In the process we provide an explanation for why demand curves slope downward from left to right. We focus on two approaches to the study of consumer choice: the utility approach (in this chapter) and the indifference approach (in Chapter 8). Among the most important concepts introduced in this chapter are utility, marginal utility and weighted marginal utility. The concept of marginal utility, which provides a justification for the law of demand, is the first marginal concept you encounter in this book. Marginal concepts play an important role in neoclassical economic analysis and we therefore explain the difference between total, marginal and average values in some detail. The theory of consumer behaviour should be relatively easy to understand. We are all consumers and can therefore rely on our own experience when analysing consumer behaviour. It is important to remember, however, that theory is always a simplification of reality and therefore always abstract. In analysing consumer behaviour we have to make certain simplifying assumptions. This can be a source of frustration to anyone who confuses theory with description.

121

7.1 Utility The purpose of consumption is to satisfy wants. In the analysis of consumer behaviour it is assumed that households or consumers attempt to maximise their satisfaction of wants, given the available means and the alternatives at their disposal. Utility is simply a term for consumer satisfaction. It expresses the degree of satisfaction that a household or consumer derives or expects to derive from the consumption of a good or ser vice. The purpose of consumer behaviour can thus be restated as the maximisation of utility, given the available means and alternative consumption possibilities. The utility of a particular good or service is the degree to which it satisfies human wants. However, a particular product does not have a unique, measurable utility which applies to all consumers. Tastes and wants differ from one consumer to the next. A product will also provide different amounts of satisfaction to a particular consumer at different times and at different places. There is also no instrument or yardstick with which utility can be measured objectively. We therefore cannot compare one consumer’s level of utility (or satisfaction) with that of another consumer.

Cardinal and ordinal utility Economists use two notions of utility: cardinal utility and ordinal utility. Cardinal utility involves the idea that utility can be measured in some way, while ordinal utility involves the ranking of different bundles of consumer goods or services in order of preference (“ordinal” is derived from “order(ing)”). The utility approach to the analysis of consumer behaviour is based on the assumption that a consumer can assign values to the amount of satisfaction (utility) that he or she obtains from the consumption of each successive unit of a consumer good or service. It is also assumed that it is possible to compare the utility of different consumer goods and services quantitatively. In other words, the utility approach is based on the notion of cardinal utility. The indifference approach, which is explained in the next chapter, employs the notion of ordinal utility, which requires consumers to rank only different bundles of goods or services in order of preference.

7.2 Marginal utility and total utility The utility approach to the analysis of consumer behaviour is based on the assumption that an individual consumer can and does subjectively assign units of value to the utility derived from the consumption of successive units of a product. To distinguish these units from other units of measurement (such as metres, litres and rand) we call them utils. Let us consider Thabo Botha’s consumption of apples during a particular period. Suppose that the first apple he consumes gives him a utility of, say, 50 utils. After he has consumed an apple, the intensity of his want for apples decreases, and the second apple’s utility is only 35 utils, and so on. The extra or additional utility that a consumer derives from the consumption of one additional unit of a good is called marginal utility. In our example, the marginal utility of the first apple is 50 utils and the marginal utility of the second apple is 35 utils. Table 7-1 contains hypothetical values for the marginal utility of apples consumed by Thabo Botha during a particular period. His total utility is the sum of all the marginal utilities. The total utility of one apple is 50 utils, the total utility of two apples is 85 utils (ie 50 + 35), and so on. This relationship between total values and marginal values is very important in economic TABLE 7-1 Thabo Botha’s marginal utility and analysis. In Box 7-1 the relationships between total, average and total utility from the consumption of marginal values are explained in greater detail. apples during a specific period Table 7-1 illustrates that if identical (or hom*ogeneous) units Number of apples Marginal utility Total utility of a good are consumed one after the other, the marginal consumed (utils) (utils) utility will decline until it reaches zero. Thereafter it becomes negative. Negative utility is usually called disutility. Total 1 50 ́ utility increases as long as marginal utility is positive. It reaches 2 35 ́ a maximum when marginal utility is zero (ie when the consumer 3 29 114 is satiated) and then decreases when marginal utility becomes 4 132 negative (ie when disutility sets in). In the table, satiation is reached after the consumption of the seventh apple. 5 12 144 Table 7-1 also illustrates the law of diminishing marginal 6 6 150 utility. This law states that the marginal utility of a good 7 2 152 or ser vice eventually declines as more of it is consumed during any given period. This law is sometimes called 0 152 Gossen’s first law, after the German economist, Hermann 9 –4 Heinrich Gossen (1810–1858), who formulated it in 1854.

122

C HA P T E R 7 THE THEORY OF DEMA ND: THE UTI LI TY A P P ROA CH

We now use total utility, marginal utility and the law of diminishing marginal utility to examine consumer choice.

A test You can conduct your own experiment to test the theory of diminishing marginal utility. Take a box of chocolates, a packet of sweets, a packet of cigarettes or a case of beer and consume the contents one after the other. Assign a value to the satisfaction derived from each additional unit consumed. The result will probably be similar to the trend illustrated in Table 7-1.

7.3 Consumer equilibrium in the utility approach In the analysis of consumer behaviour it is assumed that every consumer attempts to maximise his or her satisfaction of wants by consuming goods and services. The aim is thus to obtain the highest attainable level of total utility. The adjective “attainable” is important, since a consumer’s income and the prices of the various goods and services limit his or her capacity to satisfy wants. For a given income and a given set of prices of goods and services, a consumer will be in equilibrium if he or she obtains the maximum possible total utility. Recall that equilibrium is a situation in which there is no incentive for the participants (in this case the consumers) to change their plans. When a consumer obtains the maximum possible total utility from his or her income, given the prices of the various goods and services, there is no incentive for the consumer to change his or her plans. In marginal utility theory it is assumed that consumers are aware of their wants and of the utility they will derive from satisfying these wants. It is therefore assumed that each consumer is in a position to arrange his or her wants in order of importance and to draw up a list of the things that he or she would prefer to purchase. This list,

BOX 7-1 TOTAL, AVERAGE AND MARGINAL MAGNITUDES Total, average and marginal magnitudes and their interrelationships play a key role in economic analysis. In this chapter we explain total and marginal utility. In later chapters we introduce and use various total, average and marginal magnitudes: total, average and marginal product; total, average and marginal cost; and total, average and marginal revenue. The marginal concept also plays an important role in macroeconomics, for example the marginal propensity to consume, the marginal propensity to save and the marginal propensity to import. nderstand ec n mic t e r it is essentia t nderstand at a mar ina ma nit de represents and it re ates t t ta and a era e ma nit des We now use two non-economic examples to explain what total, average and marginal magnitudes mean and how they are interrelated. We then summarise the main points. amp e Sam Sibanda, an economics student, has to submit ten assignments during the year. Each assignment carries 100 marks. For his first assignment he obtains 70 marks. At this stage his total, marginal and average marks are all equal to 70. For the second assignment he obtains 50 marks. This additi n to his total marks now becomes his mar ina mark, which is 50. His t ta marks at this stage are 70 plus 50, that is, 120. His a era e mark is now 120 divided by 2, that is, 60. Why has his average mark fallen? Because his marginal mark (50) is lower than his previous average (70). en t e mar ina a e is er t an t e pre i s a era e a e t e a era e a e a s. For the third assignment he receives 60 marks. This extra or additional mark now becomes his marginal mark. His total marks at this stage are 180 (ie 70 + 50 + 60). His average mark is 180 divided by 3, that is, 60. His average mark thus remains unchanged. en t e mar ina a e is e a t t e pre i s a era e a e t e a era e a e remains nc an ed. For the fourth assignment he is awarded 80 marks. His marginal mark is thus 80 and his total marks increase to 260 (ie 70 + 50 + 60 + 80). His average mark is 260 divided by 4, that is, 65. His average mark has increased. Why? Because his marginal mark is higher than his previous average mark. en t e mar ina a e is reater t an t e pre i s a era e a e t e a era e a e increases. Sam’s performance in the remaining six assignments and the corresponding total, marginal and average values are summarised in the following table. Work through the table and note how the three rules referred to above always hold.

CH A P T ER 7 T H E T H E ORY OF DE M AND: T HE UT ILIT Y A PPROA CH

123

Assignment number

Marks obtained

Total marks

Marginal mark

Average mark

1

70

70

70

70

2

50

120

50

60

3

60

180

60

60

4

80

260

80

65

5

40

300

40

60

6

60

360

60

60

7

67

427

67

61

8

93

520

93

65

9

20

540

20

60

10

80

620

80

62

amp e In the 2014 cricket series between South Africa and Australia, Hashim Amla, the South African batsman, played six innings, scoring 17, 35, 0, 127, 38 and 41 (we ignore the fact that he was not out when he scored the century). His total, marginal and average scores during the series are summarised below.

Innings

Score

Total score

Marginal score

Average score

1

17

17

17

17,0

2

35

52

35

26,0

3

52

17,3

4

127

179

127

44,8

5

38

217

38

43,4

6

41

258

41

43,0

Note, once again, how the total, marginal and average values are calculated and how they are related. The relationships between total and marginal values and between marginal and average values can be summarised as follows: Total and marginal values t 8 IFOBtotal magnitude is rising, the corresponding marginal magnitude is positive.

t 8IFOUIFmarginal magnitude is lower than the average magnitude, the average magnitude falls.

or

or

When a marginal magnitude is positive, the corresponding total magnitude is rising.

When the average magnitude is falling, the marginal magnitude must lie below it.

t 8 IFOBtotal magnitude is falling, the corresponding marginal magnitude is negative. or

124

Marginal and average values

t 8IFOUIFmarginal magnitude is higher than the average magnitude, the average magnitude increases. or

C HA P T E R 7 THE THEORY OF DEMA ND: THE UTI LI TY A P P ROA CH

Total and marginal values

Marginal and average values

When a marginal magnitude is negative, the corresponding total magnitude is falling.

When the average magnitude is rising, the marginal magnitude must lie above it.

t 8 IFOBtotal magnitude reaches a maximum or a minimum, the corresponding marginal magnitude is zero.

t 8IFOUIFmarginal value is equal to the average value, the average value remains unchanged.

or

or

When a marginal magnitude is zero, the corresponding total magnitude remains unchanged.

When the average magnitude is neither rising nor falling (eg at a maximum or minimum) the marginal magnitude must be equal to it.

A mathematical interpretation Anyone with a mathematical background might have noticed that t BNBSHJOBMGVODUJPOJTUIFmSTUEFSJWBUJWFPGUIFDPSSFTQPOEJOHUPUBMGVODUJPO t BNBSHJOBMGVODUJPOJTHJWFOCZUIFTMPQFPGUIFDPSSFTQPOEJOHUPUBMGVODUJPO t BOBWFSBHFGVODUJPOJTHJWFOCZUIFTMPQFPGBMJOF SBZ GSPNUIFPSJHJOUPUIFUPUBMGVODUJPO

which reflects the tastes of the consumer, is called a scale of preferences. The assumption that there is a scale of preferences does not suggest that consumers actually go so far as to write down their scales of preferences and assign numbers to the satisfaction derived from the consumption of each unit. It simply suggests that consumers can take rational decisions only if they have something like a scale of preferences at the back of their minds. In Table 7-2 we show one such scale of preferences. We assume that a consumer, Winnie Magwa, consumes three goods – bread, meat and rice. Bread costs R1,00 per unit, meat costs R3,00 per unit and rice costs R2,00 per unit. The price of bread is labelled PB, the price of meat PM and the price of rice PR. The table shows the marginal utilities (MU) and total utilities (TU) for one to ten units of bread, meat and rice that Winnie could consume per week. In each case, the subscripts denote bread (B), meat (M) and rice (R). The table also shows the weighted marginal utilities. Weighted marginal utility is the marginal utility per unit divided by the price per unit (MU/P). The significance of the weighted marginal utility will become apparent as we proceed. From the table we see, for example, that Winnie’s marginal utility derived from the consumption of the 5th unit of bread is 30 utils. We also see that her total utility from the consumption of 5 units of bread is 210 utils. Similarly, her marginal utility from the consumption of the 3rd unit of rice is 54 utils, and the total utility of 3 units of rice is 180 utils. If Winnie consumes 10 units of bread, 10 units of meat and 10 units of rice per week, her total utility will be (270 + 495 + 390) = 1155 utils. This is the maximum satisfaction that she can obtain, given the information in the table. The question is, however, whether she can afford to purchase 10 units of each good. Suppose she has only R12,00 available weekly to spend on bread, meat and rice. What should she do? To answer that question, we must determine the total utility of all the possible combinations of bread, meat and rice that she can purchase with R12,00. These combinations, along with the total utility of each combination, are summarised in Table 7-3. We see that there are 18 possible ways of spending the full R12,00 on up to ten units of each of the three goods concerned. For example, if she buys 3 units of bread, 1 unit of meat and 3 units of rice, it will cost her R12,00. This is depicted by combination 11. We also see that the highest total utility is obtained if Winnie uses her R12,00 to purchase 5 units of bread, 1 unit of meat and 2 units of rice (ie combination 7), which yields a total utility of 426 utils. Although this is one way of obtaining a solution, it is very cumbersome. Is there not an easier way of obtaining the solution, that is, of determining the consumer’s equilibrium position?

CH A P T ER 7 T H E T H E ORY OF DE M AND: T HE UT ILIT Y A PPROA CH

125

A consumer like Winnie will be in equilibrium if it is impossible to increase total utility (ie total satisfaction of wants) by purchasing more of one good and less of another. This position will be reached when the last monetary unit (rand in our example) spent on each good yields the same satisfaction or utility. This happens when the weighted marginal utility of each good is the same (provided that the specific combination is affordable). To obtain the consumer’s equilibrium position we must determine which combinations are affordable and at which of these combinations the weighted marginal utility (ie the marginal utility divided by the price of the product) is the same for all the goods in question. We now go back to Table 7-2 and see that this is indeed the case at an affordable combination of 5 units of bread, 1 unit of meat and 2 units of rice. At this combination the weighted marginal utility of each product (obtained by dividing the marginal utility by the price) is equal to 30. When the weighted marginal utilities are equal and Winnie has just spent her available income, she is in equilibrium. At equilibrium she derives the same utility from the last rand spent on each product. In symbols we can express the equilibrium condition as follows: MUB = MUM = MUR ––––– ––––– ––––– PB PM PR where MUB, MUM and MUR are the marginal utilities of bread, meat and rice respectively and PB, PM and PR are the prices of bread, meat and rice respectively. Note that it is not sufficient to compare the marginal utilities only. The marginal utilities (or consumer satisfaction) must first be related to the prices of the goods and services concerned. A motorcar, for example, will yield far greater consumer satisfaction than a kilogram of meat. The important aspect, however, is the value (or satisfaction) that the consumer obtains in relation to the amount of money he or she spends. This information is given by the weighted marginal utility. Although consumers do not actually think in terms of weighted marginal utility, this is what they are in effect doing when they decide which combination of goods and services to purchase, given their available income. From Table 7-2 we see that there are also other combinations of bread, meat and rice where the weighted marginal utilities are equal. For example, 6 units of bread, 3 units of meat and 4 units of rice all have a weighted marginal utility of 24. But this combination costs R6,00 + R9,00 + R8,00 = R23,00 and is therefore not affordable in our example. The same applies to other similar combinations, for example 7 units of bread, 5 units of meat and 6 units of rice; and 8 units of bread, 7 units of meat and 8 units of rice. Two conditions have to be met for the consumer to be in equilibrium:

TABLE 7-2 Winnie’s scale of preferences in respect of the weekly consumption of bread, meat and rice Utils

Goods Bread (PB = R1,00)

Meat (PM = R3,00) MU

126

MUB

TUB

́

54

54

́

́

B ––––––

Rice (PR = R2,00) MU

MUM

TUM

54

90

́

102

42

144

42

́

36

́

30

́

M ––––––

MU

R ––––––

MUR

TUR

30

66

66

33

171

27

60

126

30

72

243

24

54

27

36

63

306

21

24

210

30

54

360

42

270

21

24

234

24

45

405

15

36

306

́

252

36

441

12

30

336

15

́

12

264

12

27

́

24

360

12

́

́

270

́

́

́

10

́

270

́

́

495

́

12

390

́

PB

PM

PR

C HA P T E R 7 THE THEORY OF DEMA ND: THE UTI LI TY A P P ROA CH

t 5 IFDPNCJOBUJPOPGHPPETQVSDIBTFEIBTUPCFBGGPSEBCMF t 5IFXFJHIUFENBSHJOBMVUJMJUJFTPGUIFEJGGFSFOUHPPETNVTU be equal. This is sometimes referred to as the law of equalising the weighted marginal utilities, or Gossen’s (improved) second law. Equalising the weighted marginal utilities for any pair of goods implies that the consumer’s subjective valuation of the relative importance of the two goods is the same as the objective valuation of the market, as reflected in the market prices of the goods concerned. Consider two goods, A and B. We know that there can be consumer equilibrium only if MU A MU B ...................................................(7-1) PA PB Multiplying both sides of the equation by we obtain

PA MU B

MU A PA ..............................................(7-2) MU B PB

TABLE 7-3 Possible combinations of bread, meat and rice that can be bought with R12,00 and the total utility of each combination Combination ́ ́ ́ ́ ́ ́ ́ ́ ́ 10 11 12 13 14 15 16 17

Units of Bread

Meat

Rice

Total utility (utils)

10 ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́

0 1 0 1 2 0 1 2 0 3 1 2 0 1 3 4 2 0

1 0 2 1 0 3 2 1 4 0 3 2 5 4 1 0 3 6

336 360 390 405 414 426 417 414 399 372 372 363 306 351 306

This means that the ratio of the marginal utilities (as assigned by the consumer) must be the same as the ratio between the market prices of the goods. In other words, the rate at which the consumer is subjectively willing to exchange the two goods must be the same as the rate at which the goods are exchanged in the market. We have established the conditions for consumer equilibrium and can now proceed to derive a consumer’s demand curve for a particular product.

7.4 Derivation of an individual demand curve for a product A demand curve shows the quantities demanded of a good or service at different prices. We now use a simple example to illustrate how a consumer’s equilibrium changes if the price of a product changes. Suppose that Helen Meyer has R10,00 available per week to spend on chocolates and yoghurt, which cost R2,00 and R3,00 per unit respectively. Her scale of preferences is illustrated in Table 7-4, which is constructed on the same basis as Winnie’s scale of preferences in Table 7-2. The subscript C denotes chocolates and the subscript Y denotes yoghurt. The best that Helen can do with her R10,00 is to purchase 2 units of chocolate and 2 units of yoghurt per week. The weighted marginal utility of chocolate (MUC /PC ) is then equal to the weighted marginal utility of yoghurt (MUY/PY). Her R10,00 yields a total utility of (50 + 69) = 119 utils. This is the maximum that she can achieve by spending her R10,00 on the two products.

TABLE 7-4 Helen Meyer’s utility from chocolates and yoghurt (per week) Goods Chocolates (PC = R2,00)

Units

Yoghurt (PY = R3,00)

MUC

TUC

MUC PC

MUY

TUY

MUY PY

1

30

30

15

39

́

13

2

20

50

10

30

́

10

3

14

64

́

24

́

́

4

10

74

́

111

́

5

́

́

15

126

́

CH A P T ER 7 T H E T H E ORY OF DE M AND: T HE UT ILIT Y A PPROA CH

127

MU C 20 PC 2 MU Y 30 PY 3

Suppose the price of chocolates falls to R1,00 per unit, ceteris paribus. Helen’s new position is illustrated in Table 7-5. The only things that have changed are the price of chocolates PC and the weighted marginal utilities of different quantities of chocolate. She now maximises her utility by consuming 4 units of chocolate and 2 units of yoghurt per week. The weighted marginal utility in each case is 10. Her total utility increases from 119 utils to (74 + 69) = 143 utils. Once again, the ratio between the marginal utilities of the two products at equilibrium is the same as the ratio between the prices of the products:

FIGURE 7-1 Helen Meyer’s demand curve for chocolates P

Price of chocolates (R)

Again note that the ratio between the marginal utilities at equilibrium is the same as the ratio between the prices of the two products:

D A

2

B

1

D 0

Q 2

1

3

4

Quantity of chocolates (units)

At a price of R2,00, two units are demanded (point A) and at a price of R1,00, four units are demanded (point B). By joining the two points, we obtain Helen’s demand curve for chocolates. It slopes downwards from left to right.

MU C 10 PC 1 MU Y 30 PY 3

What does this mean? Simply that Helen will increase her utility by consuming a greater quantity of chocolates when the price of chocolates falls, ceteris paribus. This, of course, is what the demand curve (or the law of demand) is all about. A utility-maximising consumer will demand a greater quantity of a product when the price of the product falls, while all other things remain unchanged. The individual’s demand curve thus slopes downward from left to right. The two quantities of chocolates demanded by Helen are shown in Figure 7-1. At a price of R2,00 per unit of chocolate, Helen will plan to purchase 2 units. If the price falls to R1,00, she will plan to purchase 4 units. Other points can be obtained in a similar way. By joining these points, a downward-sloping demand curve DD is obtained, in accordance with the law of demand introduced in Chapter 4. In Figure 7-1 the demand curve is shown as a straight line. This is not necessarily always the case – it could have another shape. The important point is that the demand curve has a negative slope – as the price of the product falls, the quantity demanded will increase (and as the price rises, the quantity demanded will fall). The market demand cur ve is obtained by adding all the individual demand curves horizontally. This curve will also have a negative slope. We can use the same method to show how a consumer will react if the price of one of the products increases or if the income of the consumer changes. In both cases the results will confirm the conclusions in respect of the demand curve reached in Chapter 4. Some alleged exceptions to the law of demand are discussed in Box 7-2.

TABLE 7-5 Helen Meyer’s utility from the weekly consumption of chocolates and yoghurt at a lower price of chocolates Goods Chocolates (PC = R1,00)

Units

128

Yoghurt (PY = R3,00)

MUC

TUC

MUC PC

MUY

TUY

MUY PY

1

30

30

30

39

́

13

2

20

50

20

30

́

10

3

14

64

14

24

́

́

4

10

74

10

111

́

5

6

6

15

126

́

C HA P T E R 7 THE THEORY OF DEMA ND: THE UTI LI TY A P P ROA CH

BOX 7-2 POSSIBLE EXCEPTIONS TO THE LAW OF DEMAND The law of demand states that the higher the price of a product, the lower will be the quantity demanded, ceteris paribus, or that the lower the price of the product, the higher will be the quantity demanded, ceteris paribus. There are possible exceptions to this law. However, as we explain below, the alleged exceptions apply to individual demand rather than to market demand. At most, some of these “exceptions” will influence the price elasticity of market demand. As explained in Box 4-2, and again later in Chapter 8, the impact of a price change can be split into a substitution effect and an income effect. When the price of a product increases, it means, first, that the product has become more expensive relative to other products, ceteris paribus. As a result, the quantity demanded will tend to decrease. Other products whose prices have remained unchanged will be subsituted for some of the product. Similarly, if the price of the product decreases, it will become relatively cheaper, ceteris paribus, and a greater quantity will tend to be demanded. This is the substitution effect. A possible exception is the case of a snob (or Veblen) effect, which occurs when consumers derive utility from owning or consuming expensive or exclusive goods (eg diamonds, gold Rolex watches, jewellery, French champagne, designer clothing, expensive motorcars, oriental carpets). Thorstein Veblen (1857-1929) called this conspicuous consumption. Where certain high-priced goods have a “snob” value, an increase in price may lead to an increase in the quantity demanded and if such ostentatious goods become cheaper and less exclusive they might become less sought after in certain circles. The result may be an abnormal, positivelysloped demand curve. However, when the goods become cheaper other consumers will also be able to afford them and the quantity demanded by these consumers will tend to increase. There is no reason to assume that the total quantity demanded by all consumers will decline. The market demand will probably still reflect the law of demand, although it might become less price elastic as prices fall, due to the fact that certain consumers will no longer wish to purchase the product once it loses its snob appeal. The impact of a price change is not confined to the substitution effect. When the price of a product changes, the real income of consumers also changes, ceteris paribus. When the price decreases, real income (or purchasing power) increases, ceteris paribus, and when the price increases, real income decreases. This is the income effect. Normally, an increase in income will lead to an increase in the quantity demanded, and a decrease in income to a decrease in the quantity demanded. However, this need not always be the case. With some products, called inferior goods, the quantity demanded falls as income increases (or rises as income decreases). However, as long as the substitution effect is greater than the income effect, the law of demand will still apply. The size of the income effect depends on the proportion of consumers’ income that is spent on the product. The greater the proportion, the stronger the income effect will be. In the case of poor households who spend a large proportion of their income on a staple food (eg bread, rice or maize meal), the negative income effect caused by an increase in price of the staple food might exceed the substitution effect, thus violating the law of demand. This possibility is usually called the Giffen case (or Giffen paradox), after Sir Robert Giffen, who reputedly observed that an increase in the price of wheat led to an increase in the consumption of bread by 19th century English peasants and that an increase in the price of potatoes in the 1840s led to an increase in the consumption of potatoes by Irish peasants. Possible modern examples include the consumption of rice by poor households in Bangladesh and the consumption of maize meal by poor South African households. The argument is that a price increase will have such a strong income effect that the households will no longer be able to afford more expensive foodstuffs (eg meat) and will only be able to survive by purchasing more of the basic foodstuff. However, it is doubtful whether such Giffen goods really exist, and if they do exist they will be extremely rare (and confined to particular market segments).

CH A P T ER 7 T H E T H E ORY OF DE M AND: T HE UT ILIT Y A PPROA CH

129

The various possible substitution, income and price effects are summarised in the table below. Effects of a price change Type of good

Price change

Substitution effect

Income effect

Total price effect

Normal

P decreases P increases

Qd increases Qd decreases

Qd increases Qd decreases

Qd increases Qd decreases

Inferior (but not Giffen)

P decreases P increases

Qd increases Qd decreases

Qd decreases Qd increases

Qd increases Qd decreases

Giffen

P decreases P increases

Qd increases Qd decreases

Qd decreases Qd increases

Qd decreases Qd increases

In our analysis of demand we have assumed that each consumer’s demand is independent of other consumers’ behaviour. This assumption, however, does not always hold. Exceptions include the snob effect, referred to earlier, as well as the bandwagon effect. The latter occurs when a consumer wants a good because other consumers have it – in other words, it is fashionable to possess the good. Examples include certain children’s toys, items of clothing and swimming pools. Where a bandwagon effect exists, the demand curve will tend to become more price elastic, since a fall in price would lead to a greater increase in the quantity demanded than would otherwise have been the case.

7.5 Comments on the utility approach We have now examined the decisions of an individual consumer by using the utility approach to consumer theory, which is based on the notion of cardinal utility. In the process we provided a theoretical justification for a downward sloping demand curve. The key concept in the utility approach is marginal utility. Marginal concepts play an important role in economic analysis. It is important to understand what “marginal” means and how a marginal value relates to an average value and a total value. The British social scientist, Jeremy Bentham (1748–1832), who was one of the earliest proponents of marginal utility, hoped that it would someday be possible to measure utility objectively, the way we measure length or temperature. He envisaged some kind of machine which could be connected to an individual to measure utility (ie the individual’s degree of satisfaction or happiness). This, of course, was wishful thinking. Utility cannot be measured objectively – it can only be measured subjectively. Interpersonal comparisons of utility are therefore impossible. In fact, to many students (and economists) the idea that utility can be measured at all is quite ridiculous, with the result that they reject the whole utility approach. Although such a reaction is quite understandable, it is not justified. Economic theory attempts to explain how people behave, and economists can use utility to analyse consumer choice although no economist has ever seen or measured a unit of utility. Even natural scientists use constructs which have never been observed (eg force) to analyse certain problems. The fact that utility cannot be measured objectively is not a sufficient reason to reject the utility approach to the analysis of consumer behaviour. There is, however, an alternative approach to the analysis of consumer behaviour, which yields the same results but does not require the assumption of cardinally measurable utility. This approach, which is called the indifference approach, is examined in the next chapter.

130

C HA P T E R 7 THE THEORY OF DEMA ND: THE UTI LI TY A P P ROA CH

IMPORTANT CONCEPTS

Utility Cardinal utility Ordinal utility Total utility Marginal utility

Average utility Consumer equilibrium Substitution effect Income effect Snob effect

CH A P T ER 7 T H E T H E ORY OF DE M AND: T HE UT ILIT Y A PPROA CH

Bandwagon effect Conspicuous consumption Inferior goods

131

More about economics and economists If economists were any good at business, they would be rich men instead of advisers to rich men. K I R K KE R KOR IA N

In economics the majority is always wrong. J OH N KE N N ETH GA L B R AIT H

Every short statement about economics is misleading, with the possible exception of my present one. A LF R E D MA R SHA LL

In economics, hope and faith coexist with great scientific pretension and also a deep desire for respectability. J OH N KE N N ETH GA L B R AIT H

If economists and statisticians had deliberately set out to confuse and perplex our rules they could hardly have been more successful. J OH N J E W K ES

Food for thought If you don’t read the newspaper you are uninformed, if you do read the newspaper you are misinformed. M AR K T WA I N

Once a newspaper touches a story, the facts are lost forever, even to the protagonists. N O R MAN M A I L ER

C HA P T E R 7 THE THEORY OF DEMA ND: THE UTI LI TY A P P ROA CH

8

The theory of demand: the indifference approach

Chapter overview 8.1 Ordinal and cardinal utility 8.2 Indifference curves 8.3 The budget line 8.4 Consumer equilibrium 8.5 Changes in equilibrium Important concepts

Knowing how to simplify one’s description of reality without neglecting anything essential is the most important part of the economist’s art. JAMES S DUESENBERRY

Economic science is but the working of common sense aided by appliances of organised analysis and general reasoning. ALFRED MARSHALL

Say it in words, demonstrate it in graphs and tables, and if technical details are needed, place them in appendices or provide references. IRVING FISHER

Learning outcomes Once you have studied this chapter you should be able to 䡲 explain what indifference curves are 䡲 define the budget line and explain consumer equilibrium 䡲 explain the impact of changes in income or prices 䡲 distinguish graphically between the income and substitution effects of a price change

The indifference approach was devised towards the end of the 19th century by a famous Italian economist, Vilfredo Pareto (1848–1923), and developed further by 20th century economists such as the Nobel Prize winner, Sir John Hicks (1904–1989). The indifference approach does not require the measurement of marginal utility. Nevertheless, it yields the same results as the utility approach. But why bother with another approach if its results are the same as those of the one explained in the previous chapter? First, many people are not impressed by the notion that consumer satisfaction can be measured and that changes in utility can be compared. Second, the indifference curve technique is an extremely useful tool which can be used to analyse a variety of other choices, over and above consumers’ choices between different goods and services. Another advantage of the indifference approach is that it allows us to distinguish graphically between the income effect and the substitution effect of a price change. In this chapter we explain what indifference cur ves are, and we indicate their important properties. We then introduce the budget line and combine it with indifference curves to explain consumer equilibrium. This is followed by an investigation of the effects of changes in income and prices. The income and substitution effects of a price change are separated and a demand curve is derived.

133

8.1 Ordinal and cardinal utility The indifference approach to the analysis of the demand for goods and services is based on the notion of ordinal utility. The difference between cardinal utility (on which the utility approach is based) and ordinal utility was explained in Chapter 7. We can further clarify the difference between cardinal and ordinal magnitudes by considering the measurement of length. The metric scale is an example of a cardinal scale. It enables us to measure distances and allows us to compare different distances with each other; for example if distance A is 100 metres and distance B is 200 metres, then we know that B is exactly twice as long as A. An ordinal scale, on the other hand, simply indicates that some distances are shorter than, longer than or the same as other distances. Such a scale enables us to rank the distances, say, from shortest to longest, but it does not enable us to determine precisely how the distances compare. In contrast to cardinal numbers, the size relationship of ordinal numbers cannot be established. Ordinal utility simply means that the satisfaction which a consumer obtains from consuming different products or bundles of products can be ranked or ordered. The consumer can rank different products or combinations of products in order of preference, but can say nothing about the absolute level of satisfaction that each product or combination of products yields. The size of the utility differences cannot be established. The consumer can rank things only from highest to lowest, best to worst, most satisfying to least satisfying, and so on.

8.2 Indifference curves Three basic assumptions The indifference approach is based on three basic assumptions: the assumption of completeness (or law of comparison), the assumption of consistency (or transitivity) and the assumption of non-satiation (or non-satiety). These assumptions may sound complicated, but they are actually quite simple. As you will see, they are also very reasonable and plausible assumptions. t 5IFBTTVNQUJPOPGcompleteness simply means that it is assumed that a consumer is able to rank all possible combinations (or bundles) of goods and services in order of preference. Consider two bundles of consumer goods: bundle A consists of 3 kg of meat and 2 dozen bottles of beer, while bundle B consists of 2 kg of meat and 3 dozen bottles of beer. A consumer must then be able to say whether he or she prefers A to B, prefers B to A or is indifferent to the differences between them (ie values them both equally). The consumer must be able to do the same for all other possible combinations of products. t 5IFBTTVNQUJPOPGconsistency (or transitivity) simply means that consumers are assumed to act consistently. Consider three bundles, X, Y and Z. If the consumer prefers X to Y and prefers Y to Z, then he or she must (according to this assumption) also prefer X to Z. If not, then the consumer is acting inconsistently and his or her behaviour cannot be analysed. t 5IFBTTVNQUJPOPGnon-satiation (or non-satiety) simply states that consumers are not yet fully satisfied and prefer more to less. Thus, if bundle A contains 3 kg of meat and 2 dozen bottles of beer, and bundle C contains 4 kg of meat and 3 dozen bottles of beer, the consumer is assumed to prefer C to A. Given the three basic assumptions, a consumer’s tastes and preferences can be indicated by means of an indifference curve.

Definition An indifference cur ve is a cur ve which shows all the combinations of two products that will provide the consumer with equal levels of satisfaction or utility. The combinations are equally desirable and the consumer is thus indifferent between them. An example

To explain indifference curves, we consider an imaginary consumer, Koos van der Merwe, who consumes only two products, bread and meat. Koos decides that it does not matter to him whether he gets one portion of meat and six loaves of bread per week or two portions of meat and three loaves of bread. These two combinations provide him with the same amount of satisfaction, that is, he is indifferent between them. He also indicates some other combinations of meat and bread that will yield the same level of satisfaction or total utility as the previous two. The different combinations are shown in Table 8-1. 134

TABLE 8-1 Combinations of meat and bread that yield the same level of satisfaction to Koos van der Merwe Combination

Meat (portions per week)

Bread (loaves per week)

A B C D

1 2 3 4

6 3 2 1,5

C HA P T E R 8 THE THEORY OF DEMA ND: THE I NDI FFERENCE A P P ROA CH

Quantity of bread (loaves)

The information in Table 8-1 is shown graphically in Figure FIGURE 8-1 An indifference curve 8-1, with bread (loaves per week) on the vertical axis and meat (portions per week) on the horizontal axis. Each of the combinations in the table is represented by a single point in 6 A the figure. The points listed in Table 8-1 are not the only points between which Koos is indifferent – there are also other 5 (intermediate) combinations (eg between A and B) which yield the same level of satisfaction. We draw a curve through 4 points A, B, C and D which is called an indifference cur ve. The points on the curve (including those between A, B, C and 3 B D) represent different combinations of the two goods that are C equally desirable or attractive to Koos – he will derive the same 2 D total satisfaction or utility from each of these combinations. U The indifference curve in Figure 8-1 bulges towards the 1 origin – we say that the curve is convex when it is viewed from the origin. As we move downwards to the right along 0 4 5 1 2 3 6 the indifference curve (ie as the loaves of bread decrease and Quantity of meat (portions) the portions of meat increase), the curve becomes flatter (ie its slope decreases). This illustrates the law of substitution, A, B, C and D are all combinations of bread and meat which is similar to the law of diminishing marginal utility between which the consumer (Koos) is indifferent. introduced in Chapter 7. The law of substitution states that the By joining the points an indifference curve U is scarcer a good becomes, the greater its substitution value obtained. All points on the indifference curve will be. In other words, the marginal utility of the good that represent combinations of the two products which becomes less plentiful rises in relation to the marginal utility of yield the same level of consumer satisfaction. the good that becomes more plentiful. This can be explained by considering the various combinations listed in Table 8-1. The difference between combinations A and B indicates that Koos is willing to sacrifice three loaves of bread for a second portion of meat. However, between points B and C he is prepared to sacrifice only one loaf of bread for an extra (third) portion of meat. Moreover, he is prepared to sacrifice only half a loaf of bread to obtain a fourth portion of meat (points C and D ). The fewer his loaves of bread (ie the less plentiful bread becomes) the less bread he is willing to swop for an additional portion of meat. The rate at which Koos is prepared to substitute or exchange bread for meat between different points is given by the slope of a straight line between the points. For example, between A and B the slope of such a line is 3 (ignoring the negative sign); between points B and C it is 1, and so on. At any point on the indifference curve the exchange ratio or substitution ratio between the two goods is given by the slope of a tangent to the indifference curve (ie a line which just touches the curve at that particular point). The slope of the tangent (which is also the slope of the indifference curve at that point) indicates the rate at which the consumer is prepared to sacrifice a small quantity of one good (bread) for a little more of the other good (meat). This rate is called the marginal rate of substitution (MRS). We can now restate our previous conclusion as follows: As we move downwards from left to right along an indifference curve, the marginal rate of substitution (which is equal to the slope of the curve) decreases. The law of substitution can therefore also be called the law of the diminishing marginal rate of substitution.

Properties of indifference curves The exact shape of an indifference curve will vary from one consumer to the next, but indifference curves usually slope downwards from left to right – for an exception to this rule, see Box 8-1. An indifference curve shows various combinations of two goods or services which yield the same level of satisfaction or total utility to a particular consumer. For each level of satisfaction there will be a unique indifference curve, showing the various combinations which yield that particular level of satisfaction to the consumer. In principle it is therefore possible to draw an infinite number of indifference curves for any consumer’s choice between two goods. Such a collection of indifference cur ves is called an indifference map. Table 8-2 contains two additional sets of combinations of bread and meat that yield equal satisfaction to Koos. These data can be used to plot two more indifference curves, U1 and U3, in Figure 8-2. The original indifference curve in Figure 8-1 is also shown and is labelled U2. Figure 8-2 is an example of an indifference map containing three indifference curves (U1, U2 and U3). The further we move away from the origin, the larger the quantities of the two goods become and therefore the greater the level of consumer satisfaction becomes, as illustrated by the indifference curve. Given our assumption that the consumer is not satiated (ie not satisfied fully), it follows that he or she will derive greater utility from consuming more of both goods, as illustrated by a movement to a higher indifference curve (further away CH A P T ER 8 T H E T H E ORY OF DE M AND: THE INDIF F E RENCE A PPROA CH

135

BOX 8-1 TWO EXTREME CASES The two limiting cases of indifference curves are perfect complements and perfect substitutes. If two goods are perfect complements it means that they can only be used together (ie in fixed proportions). A two-legged person can, for example, only use one left shoe with one right shoe. If he or she has only one left shoe, then more than one right shoe will yield no additional satisfaction. Similarly, if the consumer has only one right shoe, then the second, third or fourth left shoe will not increase his or her total utility. In the case of perfect complements the indifference curves will therefore be L-shaped, as in the figure below (on the left). L

4 3 U2

2

U1

1 0

R 1

2

3

4

Quantity of Caltex petrol

Number of left shoes

C 4 3 2 1 0

U1

U2

U3

U4

S 1

2

3

4

Quantity of Sasol petrol

Number of right shoes PERFECT COMPLEMENTS

PERFECT SUBSTITUTES

The other extreme case occurs when the two goods are regarded as perfect substitutes. For example, if a consumer regards Sasol petrol as a perfect substitute for Caltex petrol, then one litre of Sasol petrol will always yield the same consumer satisfaction as one litre of Caltex petrol. In the case of perfect substitutes the indifference curve is a straight line which slopes downward from left to right as in the figure on the right. Note that “normal” indifference curves, such as the one illustrated in Figure 8-1, lie between the two extremes of perfect complements and perfect substitutes.

from the origin). Although we cannot quantify the amount TABLE 8-2 Two further sets of combinations of bread and meat that yield equal of consumer satisfaction represented by each indifference satisfaction to Koos curve, we can say that U2 in Figure 8-2 represents a higher level of satisfaction than U1, and that U3 represents a greater U1 U3 level of satisfaction than either U1 or U2. Bread Meat Bread Meat Another important property of indifference curves is (loaves (portions (loaves (portions that they never intersect or touch each other. This can per week) per week) per week) per week) be explained with the aid of Figure 8-3, which shows two “indifference curves” that intersect each other. It can easily 6 0,5 6 1,5 be proved that such an intersection is impossible, given our 4 1 4,5 2 2 2 3 3 assumptions. According to the definition of an indifference 1 3 2,25 4,5 curve, all combinations of bread and meat on a particular curve will yield the same level of satisfaction or total utility to the consumer. This means that combinations B and C on curve I represent the same level of satisfaction. Similarly, B and H on curve II provide the consumer with the same level of satisfaction. If B and C (on curve I), and B and H (on curve II) yield the same level of satisfaction, then C and H should also yield equal satisfaction. But H represents a combination of more bread and meat than C, and we have assumed that consumers prefer more to less. It is therefore impossible for the consumer to be indifferent between C and H – he or she will always prefer H to C. This proves that indifference curves cannot intersect each other (given our assumptions). You can use the same method to prove that indifference curves cannot ever touch each other.

136

C HA P T E R 8 THE THEORY OF DEMA ND: THE I NDI FFERENCE A P P ROA CH

FIGURE 8-2 An indifference map

FIGURE 8-3 Indifference curves cannot intersect

8

Quantity of bread (loaves)

Quantity of bread (loaves)

6

5

4

3

2

7 6 5 B 4 H 3

II

2 I

C

3

1

2

1

1

2

3

4

5

6

7

8

Quantity of meat (portions) 1

1

2

3

4

5

Quantity of meat (portions)

U 1, U 2 and U 3 are three indifference curves, each indicating different sets of combinations of bread and meat which yield the same level of satisfaction to the consumer. Each represents a certain level of satisfaction. As we move away from the origin, the level of satisfaction increases. Of the three curves U 3 represents the highest level of satisfaction and U 1 the lowest.

Consider the two intersecting curves, I and II. By comparing B, C and H it is easy to show that I and II cannot be indifference curves. If I and II were both indifference curves, then the consumer would have to be indifferent between C and H, which clearly cannot be the case.

8.3 The budget line Now that we have considered the satisfaction the TABLE 8-3 Affordable combinations of bread and meat consumer obtains from various combinations of goods, Bread Meat we turn to the other element of the consumer’s decision, Combination (loaves per (portions per namely the combinations that he or she can afford. As week) week) we have emphasised on a number of occasions, demand must not be confused with wants. Demand is a willingness a 6 0 to purchase which is backed by the means to purchase b 4,5 1 c 3 2 (ie by purchasing power). When analysing demand we d 1,5 3 must therefore restrict ourselves to the combinations e 0 4 that the consumer can afford. We return to Koos van der Merwe’s choice between bread and meat. We assume that he has a fixed amount of R24 per week to spend on bread and meat, and that bread costs R4 per loaf and meat R6 a portion. With his R24 Koos can afford a maximum of 6 loaves of bread (and no meat) or 4 portions of meat (and no bread). Table 8-3 indicates some of the ways in which Koos can spend his R24 on bread and meat, on the assumption that he always spends the full amount.

CH A P T ER 8 T H E T H E ORY OF DE M AND: THE INDIF F E RENCE A PPROA CH

137

The combinations in Table 8-3 (as well as the intermediate combinations, such as five and a quarter loaves of bread and half a portion of meat) are illustrated graphically in Figure 8-4 by the straight line QBQM which runs through points a to e. At a Koos spends all his income on bread, while at e he spends everything on meat. This line is called the budget line, since it indicates all the combinations of the two products that the consumer (Koos) can afford to purchase with the amount of income at his disposal. The budget line is sometimes called the consumption-possibilities curve, expenditure line or budget constraint. All that is required to construct a budget line are the intercepts on the two axes (ie the maximum number of each good which the consumer can afford by spending the available amount of money on that good only). In the figure the intercepts are 6 loaves of bread and 4 portions of meat. The slope of the budget line QBQM is 6/4 or 1,5, which is the same as the ratio of the price of a portion of meat (R6) to the price of a loaf of bread (R4). It is easy to understand why this is the case. If Koos wants to purchase one more portion of meat, he must sacrifice 1,5 (ie 6/4) loaves of bread. The exchange ratio between bread and meat is thus 6:4 or 3:2, which is the same as the ratio between the price of meat and the price of bread. This is, of course, also equal to the opportunity cost of meat in terms of bread. We now combine indifference curves and the budget line to determine the consumer’s equilibrium position.

8.4 Consumer equilibrium Equilibrium in our example The axes in Figure 8-4 are the same as those in Figure 8-2. In Figure 8-5 we superimpose the budget line from Figure 8-4 on the indifference map from Figure 8-2. In principle the indifference map contains an infinite number of indifference curves, but to explain equilibrium we show only three curves, as in Figure 8-2. Our consumer (Koos) can choose any point along the budget line (QBQM). Any position above and to the right of the budget line is unaffordable and any point below and to the left of the budget line can be ignored, since we assume that Koos spends the full R24 that he has available. The consumer (Koos) will be in equilibrium when he obtains the maximum amount of satisfaction for the amount he spends. This is indicated by point B in Figure 8-5, which is the same as point B in Figure 8-1. At B the budget line just touches the indifference curve U2 without intersecting it. This is the highest indifference curve (ie the highest level of satisfaction or total utility) that Koos can reach, given the amount that he has available to spend. At equilibrium (point B) the slope of the indifference curve is equal to the slope of the budget line. FIGURE 8-5 Consumer equilibrium

6 Quantity of bread (loaves)

FIGURE 8-4 The budget line

Quantity of bread (loaves)

QB 6 a 5 b 4 c

3

5

4

3

B U3

2

U2 1

2 d

QM

1

1

2

3

4

1

2

3

4

U1 5

Quantity of meat (portions)

e QM 5

6

Quantity of meat (portions)

The line Q BQ M illustrates all the possible combinations of bread and meat that Koos can afford to purchase for R24, with the price of bread and meat being R4 per loaf and R6 per portion. Points a to e correspond to the combinations in Table 8-3.

138

QB

The consumer is in equilibrium (ie obtains the highest affordable level of satisfaction) where the highest indifference curve just touches the budget line. This point of tangency is indicated by B on indifference curve U 2. Points on U 1 are attainable (ie affordable) but yield less satisfaction than points on U 2. Points on U3 yield greater satisfaction but are unattainable (ie not affordable).

C HA P T E R 8 THE THEORY OF DEMA ND: THE I NDI FFERENCE A P P ROA CH

Any indifference curve which intersects the budget line, such as U1 in Figure 8-5, represents a lower level of satisfaction than U2. On the other hand, any indifference curve which does not touch or intersect the budget line, such as U3 in Figure 8-5, is beyond the consumer’s means. It can be shown that at equilibrium the weighted marginal utilities (ie the marginal utility of each good divided by its price) are all equal. Maximum satisfaction (or consumer equilibrium) is attained at the point where the budget line is tangential to (ie just touches) the highest possible indifference curve, indicated by point B in Figure 8-5. At equilibrium the slope of the budget line is equal to the slope of the indifference cur ve. The slope of the budget line (for two goods x and y) is given by Px/Py while the slope of the indifference curve (⌬Qy/⌬Qx) is equal to MUx/MUy and MRS. Equilibrium is thus attained where MRS =

Q y MU x Px = = Q x MU y Py

............................(8-1)

At equilibrium the ratio of the marginal utilities of the two goods is thus equal to the ratio of their prices, that is,

MU x Px ......................................................(8-2) MU y Py which is the same as Equation 7-2 in Chapter 7. Multiplying both sides of Equation 8-2 by MUy/Px we obtain MUx/ Px = MUy/Py. In other words, at equilibrium, the marginal utilities and prices of the consumer goods must be in proportion to one another. In Chapter 7 we called the latter result the law of equalising the weighted marginal utilities, which means that the consumer is in equilibrium only when he or she derives the same marginal utility from the last rand spent on good as he or she does from the last rand spent on good . This equation can be expanded to any number of goods, so that consumer equilibrium may be defined as

MU n MU x MU y MU z ... .................(8-3) Py Pz Pn Px As long as the ratios of marginal utility to price are not equal for all goods, the consumer can attain a higher level of total utility by adjusting his or her purchasing pattern. Should the marginal utility per rand spent, derived from the last unit of good y purchased, be greater than that derived from the last unit of good x purchased, then the consumer can increase his or her total utility by buying more of good y and less of good x. When the ratios are equal, however, total utility cannot increase further, and consumer equilibrium has been reached.

The consumer’s valuation and the market valuation At equilibrium the consumer’s subjective valuation of the relative value of different consumer goods (indicated by the ratio of their marginal utilities) is the same as the objective valuation of the relative value of the goods in the market (indicated by the ratio of their market prices). This is essentially what the equilibrium position is all about. As long as there is a difference between the consumer’s subjective valuation and the market’s objective valuation of the relative importance of the goods, the consumer can improve his or her position by exchanging goods, but when the valuations coincide, no further improvement is possible and equilibrium is reached.

8.5 Changes in equilibrium In this section we investigate how the equilibrium position changes if the consumer’s income or the price of one of the goods changes.

A change in income If the consumer’s income changes, while prices remain constant, a new table of consumption possibilities, similar to Table 8-3, can be determined. For example, if the consumer’s income increases from I1 to I2, then he or she can choose to purchase more of one or both goods. The budget line shifts to the right, as indicated in Figure 8-6. Since the price ratio Px /Py remains unchanged, the new budget line has the same slope as the original one (ie the two budget lines are parallel). The intercepts increase from I1 /Px and I1 /Py to I2 /Px and I2 /Py respectively. The new budget line will be at a tangent to a higher indifference curve than before. In Figure 8-6 the equilibrium shifts from B to B'. If we join points such as B and B' we obtain an income-consumption curve, which indicates the effect of changing income on the consumer’s consumption of the two goods. If the consumer’s income decreases, ceteris paribus, exactly the opposite will happen. The budget line will shift parallel to the left (ie closer to the origin). The previous indifference curve will no longer be attainable. The consumer’s total utility will be reduced as a result of the decrease in income. CH A P T ER 8 T H E T H E ORY OF DE M AND: THE INDIF F E RENCE A PPROA CH

139

FIGURE 8-6 The effect of an increase in income Qy

FIGURE 8-7 The impact of a price change and the derivation of a demand curve (a) QB

I2 –– Py

Income-consumption curve

I1 –– Py

B' U2

B U1 0

5

Quantity of bread (loaves)

Quantity of good y

6

B'

3

I2 –– Px

Price-consumption curve

2 U2 U4 Q 'M 0

Quantity of good x

When the consumer’s income changes, the equilibrium quantities of the goods concerned will not always change in the same direction. Earlier we distinguished between normal goods and inferior goods. In the case of a normal good an increase in income will result in an increase in the quantity of the good that is demanded. When an increase in income causes a decrease in the quantity demanded, the good is called an inferior good. We will return to the impact of changes in income when we analyse the effect of a price change.

12

QM

5 4 3 2 Quantity of meat (portions)

1

6

(b)

P

Price of meat (rand)

The original equilibrium is at B on indifference curve U 1. If income increases, the budget line shifts parallel to the right and a new equilibrium B' is obtained on a higher indifference curve U 2. By joining B and B' we obtain an income-consumption curve.

A change in price

B

1

Qx I1 –– Px

4

B'

10 8 6 4 2 0

B Demand curve 3 1 2 Quantity of meat (portions)

Q

The impact of an increase in the price of meat is illustrated in (a). The original budget line is Q BQ M and the original equilibrium is B on indifference curve U 2. When the price of meat increases, the budget line swivels to Q BQ'M and a new equilibrium B' is reached on a lower indifference curve U4. By joining B' and B we obtain a price-consumption curve. The increase in the price of meat leads to a reduction in the quantity of meat demanded. This relationship is shown in (b), which is simply the familiar individual demand curve depicted in Chapter 4.

To explain the effect of a change in the price of a good, we return to Koos van der Merwe and his R24 per week that he can spend on bread and meat. Suppose that the price of meat rises from R6 to R12 per portion. What will be the effect on the budget line? As shown in Figure 8-7(a), the budget line changes from QBQM to QBQ 'M. Because the price of bread has not changed, QB remains at 6 loaves of bread. But because the price of meat has increased, Q M (ie 4 portions of meat per week) is no longer attainable. Koos can now only afford a maximum of 2 (ie 24/12) portions of meat per week, indicated by Q 'M. The budget line still starts at 6 loaves of bread but it rotates about this point to cut the horizontal axis closer to the origin, at 2 portions of meat. The new budget line has a slope of 3 (ignoring the minus sign). The new equilibrium is at point B', on a lower indifference curve (U4) than before. The rise in the price of meat has caused a fall in the consumption of meat. By joining points such as B' (the new equilibrium) and B (the original equilibrium), a price-consumption curve is obtained. This curve shows the combinations of the two goods that are demanded if the price of one of the goods changes. The fact that the price-consumption curve in Figure 8-7(a) is horizontal is purely coincidental. The slope of this curve depends on what happens to the consumption of bread, which, in turn, depends on the consumer’s indifference map. The curve could therefore also slope upwards or downwards to the right.

140

C HA P T E R 8 THE THEORY OF DEMA ND: THE I NDI FFERENCE A P P ROA CH

Should the price of meat fall, the budget line will swing towards the other side. For example, if B' was the original equilibrium (at a price of R12 per portion of meat), a fall in the price of meat to R6 per portion will swing the budget line to the right and B will be the new equilibrium point.

The demand curve As in the case of the utility approach (based on cardinal utility), we can use the indifference approach (based on ordinal utility) to derive a demand curve. In Figure 8-7(a) we derived two points of equilibrium for the consumer. At a price of R6 per portion the consumer will demand 2 portions of meat (point B) and at a price of R12 the consumer will demand one portion (point B'). This information can be used to draw a price-demand curve (a demand curve, for short) for this particular consumer. This is shown in Figure 8-7(b). Note that the demand curve falls from left to right, which is the normal shape of a demand curve. The demand curve shows the quantities of one specific good (meat in this instance) that will be demanded at various prices. The price of the good appears on the one axis and the quantity demanded on the other. Note that the demand curve differs from the price-consumption curve, which relates to the quantities of both goods, not just the one whose price changes. The price-consumption curve also does not explicitly show the price of the good.

Income and substitution effects of a price change

Quantity of bread (loaves)

One of the major advantages of the indifference approach is that it allows us to graphically analyse the income and substitution effects of a price change. To explain the income and substitution effects, we consider the case of a decrease in the price of a good. When the price of a good falls, while the prices of all other goods remain the same, consumers who buy that product experience an increase in their real incomes, even if their nominal incomes are unchanged. In terms of indifference curve analysis, an increase in real income means that the consumer is able to reach a higher level of satisfaction by moving to a higher indifference curve. The effect of a change in real income on the consumer’s purchases of a certain good is called the income effect. This is similar to the effect of a change in real income as a result FIGURE 8-8 The income and substitution effects of a change in nominal income with prices unchanged, as of a price change explained earlier. We saw that a rise in real income leads to an increase in the consumption of a normal good, but causes a decrease in the consumption of an inferior good. In the case of a normal good, therefore, the income effect is positive, but in the case of an inferior good it is negative. Since inferior QB goods are the exception, we only analyse the case of a normal good. Z Quite apart from the income effect, a decrease in the price Income A B effect of a good also means that the good becomes cheaper relative to all other goods, if their prices have remained constant. C U2 Therefore it becomes an attractive option to purchase more U1 Q'M Z of the good whose price has fallen. If our consumer buys only 0 QM bread and meat, and the price of meat falls while the price of m3 m1 m2 bread stays the same, then there will be a tendency for the Substitution Quantity of meat (portions) effect consumer to buy more meat, but less bread. This is known as the substitution effect, because the consumer substitutes the good that has become relatively cheaper for the one that The original budget line is Q BQ M. When the price has become relatively more expensive. of meat falls, the budget line swivels to QBQ'M. The income and substitution effects in the case of a normal Equilibrium shifts from A (on indifference curve U1) good can be analysed graphically as in Figure 8-8. If QBQM is to B (on indifference curve U2). The movement from the initial budget line, then the consumer is in equilibrium at A to B (or from m1 portions of meat to m2 portions of meat) is the price effect. This can be divided into point A. Here, the consumer purchases m1 portions of meat. a substitution effect A to C (or from m1 to m3) and If the price of meat falls, while the price of bread and the an income effect C to B (or from m3 to m2). ZZ is an consumer’s money income remain constant, the position of the auxiliary line parallel to the new budget line (QBQ'M ) budget line will change to Q BQ'M . The new point of consumer which enables us to isolate the substitution effect equilibrium is at B, where m2 units of meat are purchased. from the income effect. This increase in the consumption of meat, also depicted by the movement from A to B, represents the combined impact of the income and substitution effects.

CH A P T ER 8 T H E T H E ORY OF DE M AND: THE INDIF F E RENCE A PPROA CH

141

We now analyse the separate contribution of each effect to this increase in consumption. We draw an auxiliary line, ZZ, parallel to the new budget line (Q BQ'M ), which therefore has the same slope and indicates the same price ratio as Q B Q 'M . Line ZZ is at a tangent to the original indifference curve U1 at point C. The fact that a fall in the price of meat has increased the consumer’s real income is reflected in the movement from indifference curve U1 to U2. The movement from C to B can be ascribed solely to the income effect. Any possibility that the movement could be due to the substitution effect is eliminated by the fact that lines Q B Q'M and ZZ are parallel, and as such indicate the same price ratio. What about the movement from A to C? At A the original price ratio applied, whereas at C the new price ratio applies. Because meat has become relatively cheaper, the consumer purchases more meat but less bread – that is to say the consumer substitutes meat for bread, which is shown in the movement from A to C. The movement from A to C can therefore be attributed to the substitution effect. Note that the movement from A to C takes place on the same indifference curve, which means that the consumer’s real income is kept unchanged. Any possibility of income being even partly responsible for the movement from A to C is thereby eliminated. It is clear that the movement from A to B, termed the price effect, indeed comprises two separate effects, namely the substitution effect (A to C) and the income effect (C to B). In the case of a normal good both the income and substitution effects are in the same direction and reinforce one another. If we draw the demand curve for this normal good, it will have the standard shape of a demand curve, such as the one in Figure 8-7(b).

Further applications of the indifference curve technique Indifference curves are versatile tools which can be used to analyse a variety of economic choices and policy issues, including: t UIF DIPJDF Cf*ckFFO EJGGFSFOU GBDUPST PG QSPEVDUJPO JO UIF QSPEVDUJPO QSPDFTT o JO UIJT DBTF UIF JOEJGGFSFODF curves are called isoquants (or equal output curves) t BOJOEJWJEVBMTDIPJDFCf*ckFFOXPSLBOEMFJTVSF UIJTJTBOJNQPSUBOUFMFNFOUPGUIFBOBMZTJTPGUIFTVQQMZPG labour) and his or her reaction to changes in wages or taxes t UIFDIPJDFCf*ckFFODPOTVNQUJPOBOETBWJOH JFCf*ckFFOQSFTFOUDPOTVNQUJPOBOEGVUVSFDPOTVNQUJPO BOEUIF impact of changes in interest rates on this choice t JOUFSOBUJPOBMUSBEF You will encounter these and other applications of the indifference curve technique in intermediate courses in economics.

IMPORTANT CONCEPTS

Utility Cardinal utility Ordinal utility Indifference curve Indifference map

142

Law of substitution Marginal rate of substitution Budget line Equilibrium Income-consumption curve

Price-consumption curve Income effect Substitution effect

C HA P T E R 8 THE THEORY OF DEMA ND: THE I NDI FFERENCE A P P ROA CH

9

Background to supply: production and cost

Chapter overview 9.1 Introduction 9.2 Basic cost and profit concepts 9.3 Production in the short run 9.4 Costs in the short run 9.5 Production and costs in the long run 9.6 Summary Important concepts

Costs merely register competing attractions. FRANK KNIGHT

Cost of production would have no effect on competitive price if it could have none on supply. JOHN STUART MILL

In agriculture, the state of the art being given, doubling the labour does not double the produce. JOHN STUART MILL

Learning outcomes Once you have studied this chapter you should be able to 䡲 define the various revenue, cost and profit concepts 䡲 distinguish between the total, average and marginal product of a variable input 䡲 explain the relationship between the law of diminishing returns and the shapes of the total, average and marginal product curves in the short run 䡲 distinguish between total, average and marginal cost 䡲 explain the relationship between the product curves and the cost curves in the short run 䡲 explain the nature of production and costs in the long run

W

e have introduced demand and supply and the interaction between the two. We have also examined the theory behind the demand curve by looking at households’ decisions about how much of a particular good or service they plan to purchase at each price. The time has now arrived to look at the theory behind the supply curve, and to examine firms’ decisions about how many units of a good or a service to supply at each price. This theory is usually called the theor y of the firm. One of the major tasks of microeconomic theory is to explain and predict how firms behave and respond to changes in market forces and economic policies. Questions that must be answered include: Why do supply curves normally have positive slopes? How do the prices and productivity of the inputs or factors of production affect firms’ decisions? What is the relationship between the returns on inputs and the cost of production? What is included in costs of production? In this chapter and the next two chapters we examine the behaviour of firms. We assume that all firms aim to maximise profit. We start off by explaining what is meant by revenue, cost and profit. This is followed by a more detailed discussion of production and cost. We introduce total, average and marginal product and total, average and marginal cost, and we distinguish between the short run and the long run. Firms’ decisions under different market conditions are examined in Chapters 10 and 11.

143

In microeconomics we examine the decisions of participants in the economy such as households or firms. When we examined the decisions of households as consumers, you could refer back to your own experience as a member of a household in order to understand how the typical household behaves. In this chapter we analyse the decisions of individual firms. However, since most people cannot rely on experience to understand how a firm behaves, we shall start with some introductory comments.

9.1 Introduction Types of firms Firms can take various forms. The most common formal types of firms in South Africa are individual proprietorships, partnerships, companies, close corporations, cooperatives, trusts and public corporations. There are also numerous informal businesses, that is, businesses which are not formally registered. They include hawking, street vending, spaza shops, subsistence farming, smuggling, prostitution and shebeens. Not all of these firms function in exactly the same way. Whereas an individual proprietorship or a one-person informal business often produces only one good or service, a large company or corporation usually produces a variety of products with inputs purchased in different markets. These products are then sold in a number of other markets. The South African formal private sector is dominated by a small number of large companies or “corporations”. In South African jargon a “corporation” is a large group of companies under the control of the same group of people. It is sometimes also called a “pyramid” or a “conglomerate”. A large company or corporation typically employs thousands of workers and has many managers who specialise in various fields. The decision-making processes of a corporation therefore tend to differ substantially from those of one-person businesses. To keep matters simple, however, we confine ourselves in this chapter to the functioning of a small, uncomplicated business. The basic principles are the same in all cases.

The goal of the firm The theory of the supply of goods (or supply theory) attempts to explain the behaviour of firms. That is why it is also called the theor y of the firm. To understand how firms behave, we have to know what their goals are. In this book we assume that all firms seek to maximise profits. Firms may, of course, also have other objectives. Some firms attempt to dominate the market by maximising their sales or market share, even though this might involve reducing their profit margins. Their ultimate aim is to dominate the market to such an extent that they feel stable and secure. The fact that most large firms are not owner managed also has implications for the objectives of these firms. Although the owners (the shareholders) may want the firm to make maximum profit, the managers may pursue their own objectives, such as expanding the size of the firm, since their status, power and remuneration tend to increase as the firm grows. This is an example of the principal–agent problem in economics – see Box 9-1. A variety of managerial, behavioural and other theories have been developed to explain the behaviour of firms that pursue other, non-profit-maximising goals. For our purposes, however, it is sufficient to focus on profit maximisation. Profit is an important objective of any privately- owned firm. If a firm is not profitable, it cannot continue to exist in the long run. That is why firms are sometimes defined as profit-seeking business enterprises.

Profit, revenue and cost: a brief introduction What is profit? Profit is simply the surplus of revenue over cost. To understand the behaviour of a profit-maximising firm, we therefore have to examine its revenue structure as well as its cost structure, with a view to determining at which level of output the difference between total revenue and total cost (ie the firm’s total profit) is at a maximum. A firm’s total revenue (TR) is simply the total value of its sales and is equal to the price (P) of its product multiplied by the quantity sold (Q). Average revenue (AR) is equal to total revenue (TR or PQ) divided by the quantity sold (Q). If all units are sold at the same price, then average revenue is equal to the price of the product. Marginal revenue (MR) is the additional revenue earned by selling an additional unit of the product. More detail about the various revenue concepts is provided in Box 9-2. As we explain in Chapters 10 and 11, the revenue structure of a firm is determined by the type of market in which it operates. Some firms are price takers. They have to accept the price determined in the market and cannot set their own prices. Other firms are price makers or price setters and can, within certain limits, decide at what prices to sell their products. The revenue structures of the two sets of firms will thus differ. All this will be explained when we examine the behaviour of firms in different types of markets. In contrast to their revenue structures, the cost structures of firms are more universal and are not specifically linked to the types of markets in which they operate. In the rest of this chapter we focus mainly on the cost 144

C HA P T E R 9 BA CKGROUND TO SUPPLY: PRODUCTI ON A N D COST

BOX 9-1 THE PRINCIPAL–AGENT PROBLEM The separation of ownership and control of firms is an example of the principal–agent problem. In today’s complex economy, people (principals) often employ others (agents) who have specialised skills or knowledge. Everyday examples include medical doctors, travel agents, estate agents, insurance brokers and stockbrokers. In the case of firms, the employees (particularly the managers) can be regarded as the “agents” of the owners. For example, senior managers are the agents of the directors, who themselves are the agents of the owners (shareholders) of the firm. The problem with this is that the agent knows more about the situation than the principal: there is asymmetric information between the agent(s) and the principal(s). As a result, the agent may well not act in the principal’s interest and get away with it because of the principal’s imperfect knowledge. Your insurance broker, for example, may sell you a policy on which he or she gets a large commission but which is not really suited to your particular needs. Likewise, your stockbroker or a fund manager with links to a stockbroking firm may repeatedly buy and sell shares on your behalf to maximise his or her commission or fees. In the case of firms, the owners (principals) must have some way of monitoring the performance of their agents (eg by using independent experts) and should also try to create incentives for agents to act in their (the principals’) interests (eg by linking their remuneration more closely to the firm’s profitability).

BOX 9-2 TOTAL, AVERAGE AND MARGINAL REVENUE A firm’s total revenue (TR) is the value of its sales, and is equal to the price (P) of its product multiplied by the quantity (Q) sold, that is TR = P u Q (or simply PQ) A firm’s average revenue (AR) is equal to its total revenue (TR or PQ) divided by the quantity sold (Q), that is PQ AR= –– Q If the firm sells all units of its product at the same price, then average revenue is equal to the price of the product. A firm’s marginal revenue (MR) is the additional revenue ('TR) earned by selling an additional unit of the product ('Q), that is 'TR MR= ––– 'Q The relationships between total, average and marginal revenue are the same as the relationships between other total, average and marginal magnitudes, which were explained in Box 7-1. For example, for an increase in quantity produced tùUPUBMSFWFOVFJODSFBTFTXIFONBSHJOBMSFWFOVFJTQPTJUJWF tùUPUBMSFWFOVFGBMMTXIFONBSHJOBMSFWFOVFJTOFHBUJWF tùUPUBMSFWFOVFSFNBJOTVODIBOHFEXIFONBSHJOBMSFWFOVFJT[FSP tùBWFSBHFSFWFOVFJODSFBTFTXIFONBSHJOBMSFWFOVFJTHSFBUFSUIBOBWFSBHFSFWFOVF tùBWFSBHFSFWFOVFEFDSFBTFTXIFONBSHJOBMSFWFOVFJTMFTTUIBOBWFSBHFSFWFOVF tùBWFSBHFSFWFOVFSFNBJOTVODIBOHFEJGNBSHJOBMSFWFOVFJTFRVBMUPBWFSBHFSFWFOVF

CH A P T ER 9 B A C K G R OUND T O S UPPLY : PRODUCT ION A ND COST

145

structure of firms. Firms use inputs (eg the various factors of production) to produce output. It follows that cost of production will depend on factors such as the technological link between inputs and outputs (ie the state of technology) and the prices and productivity of the various inputs. In other words, the theory of costs is based on the theory of production.

The short run and the long run in production and cost theory An important distinction in production and cost theory is that between the short run and the long run. The short run is defined as the period during which at least one of the inputs is fixed. An example would be a firm which has a factory in which certain machinery has been installed and which can only vary its inputs of labour, raw materials, etc. In the long run all the inputs are variable. For example, this would be a period that is long enough for the firm to decide whether or not to open another factory or install additional machines. The difference between the short run and the long run in production and cost theory depends on the variability of the inputs and not on calendar time. In some industries, for example the clothing industry, the actual period required for all inputs to be variable might be quite short, while in other industries, for example the steel industry, the actual period might be quite long. Before analysing production and cost, in the short run as well as in the long run, we first have to explain the meaning of cost and profit in economic analysis.

9.2 Basic cost and profit concepts Cost In Chapter 1 we emphasised that cost has a specific meaning in economics. To the economist, the cost of using something in a particular way is the benefit forgone by not using it in the best alternative way. This is called opportunity cost, which we explained originally in Chapter 1. Whereas accountants, business people and others usually consider only the actual expenses incurred to produce a product, the economist measures the cost of production as the best alternative sacrificed (or forgone) by choosing to produce a particular product. The economist uses the opportunity cost principle to determine the value of all the resources used in production. See also Boxes 9-3 and 9-4. The difference between accounting costs and economic costs can be explained by distinguishing between explicit costs and implicit costs. Accountants tend to consider explicit costs only. Explicit costs are the monetary payments for the factors of production and other inputs bought or hired by the firm. These costs are, of course, also opportunity costs, since the payments for inputs reflect opportunities that are sacrificed. For example, if a firm pays R1 million for a certain machine, it means that it has decided not to do something else with the funds (like purchasing a different machine, purchasing a building or depositing the funds with a financial institution). Economists, however, use a broader concept of opportunity cost and consider implicit costs as well as explicit costs. Implicit costs are those opportunity costs which are not reflected in monetary payments. They include the costs of self-owned or self-employed resources. The economist recognises that the use of resources owned by the firm is not free. For example, the owner of an individual proprietorship (ie a one-person business) must consider what he or she would have earned if he or she had not been running the firm (ie the opportunity cost of the owner’s time must be included in the cost of production). Similar arguments apply in the case of all other self-owned resources, like land, plant and equipment. If these resources had not been used to produce the product in question, they could have been put to other uses that would have yielded an income to the owner. The true economic cost of using the resources in a particular way is the value of the best alternative uses (or opportunities) sacrificed. Consider the following hypothetical example. Jan van Tonder is a woodwork teacher who earns R300 000 a year (including his salary and other employment benefits, such as medical aid and pension benefits), and who has R150 000 in a savings account. Jan decides to resign from his teaching post and start his own business: making furniture on order. He uses the R150 000 in his savings account to purchase the machinery and equipment required to start the business. In addition to all the explicit money costs that he incurs, he has to consider the R300 000 a year which he sacrificed by resigning from his post, as well as the interest that he would have earned if he had kept the R150 000 in the savings account. These implicit opportunity costs are added to his explicit costs to arrive at his total economic (or opportunity) costs of producing furniture. We thus have: economic costs of production =opportunity costs =explicit costs + implicit costs The monetary payments that the firm’s resources could have earned in their best alternative uses is called normal profit. Normal profit can be regarded as the minimum return required by the owner(s) of the firm to engage in 146

C HA P T E R 9 BA CKGROUND TO SUPPLY: PRODUCTI ON A N D COST

BOX 9-3 ECONOMIC COSTS Economists do not restrict themselves to actual monetary transactions when estimating the costs of production. They want to measure the true resource costs of an activity. In other words, they want to determine the value of all the resources used in production, including the use of the owner’s time and financial resources (which form part of the firm’s implicit costs). The estimation of implicit costs is not as straightforward as using or estimating actual expenses or historical costs. For example, values have to be assigned to the owner’s time and money employed in the firm. These values are called imputed costs and their estimation inevitably involves a certain degree of subjectivity. Nevertheless, they have to be estimated in order to arrive at the true opportunity or resource costs of production. Economists also do not necessarily include all historical costs as part of economic (or opportunity) costs. Some of the historical costs may be sunk costs. When a machine which has no alternative use but to produce BDFSUBJOQSPEVDUJTQVSDIBTFEBOEJOTUBMMFE JUTPQQPSUVOJUZDPTUGBMMTUP[FSP PSBMNPTUUP[FSP EFQFOEJOH on whether or not it has any scrap value). Instances where historical costs have been incurred but where PQQPSUVOJUZDPTUTBSF[FSP BSFDBMMFEsunk costs. The basic principle is that current decisions should be based on current costs – past costs should be regarded as bygones and should be ignored when deciding on the most profitable course of action. In this chapter (and in the rest of the book) we always use the economic definition of costs.

a particular operation. If revenue is insufficient to cover the economic costs of production (including all implicit costs), the firm is not a viable concern. In our example, this means that Jan van Tonder should earn enough revenue to compensate for his loss of earnings as a woodwork teacher and the loss of interest on the amount he invested in his furniture-making business.1 Normal profit forms part of the firm’s costs of production. Thus, when an economist says that a firm is just covering its costs, it means that all explicit and implicit costs are being met and that the firm is earning a normal profit. Normal profit is explained in more detail in the next subsection. As in the case of revenue, we distinguish between total, average and marginal cost. Total cost (TC) is simply the cost of producing a certain quantity of the firm’s product. Average cost (AC) is the total cost (TC) divided by the number of units (or quantity) of the product produced (Q). Marginal cost (MC) is the addition to total cost (ΔTC) required to produce an additional (extra) unit of the product (ΔQ). Thus AC = and MC =

TC Q TC thus if Q = 1, Q then MC = TC

The relationships between total, average and marginal cost are the same as the relationships between any other set of total, average and marginal magnitudes, as explained in Box 7-1. For example, as the quantity produced increases t UPUBMDPTUJODSFBTFTXIFONBSHJOBMDPTUJTQPTJUJWF t BWFSBHFDPTUJODSFBTFTXIFONBSHJOBMDPTUJTHSFBUFSUIBOBWFSBHFDPTU t BWFSBHFDPTUEFDSFBTFTXIFONBSHJOBMDPTUJTMPXFSUIBOBWFSBHFDPTU t BWFSBHFDPTUSFNBJOTVODIBOHFEXIFONBSHJOBMDPTUJTFRVBMUPBWFSBHFDPTU These relationships are examined in greater detail in Section 9.4 .

Profit The definition of profit is quite straightforward: profit is the difference between revenue and cost. In other words, a firm’s profit is the difference between the revenue it earns by selling its product and the cost of producing it. The economist’s definition of profit is, however, not the same as the accountant’s definition of profit. Recall, from our discussion of cost, that accountants record events that have already occurred. Accounting profit is therefore an ex post concept based on recorded transactions. Economists, on the other hand, are interested in explaining and predicting behaviour and do not necessarily deal with things that have already occurred. Also recall that accountants usually consider only explicit costs, whereas economists consider all costs, including implicit costs. 1. Owners of owner-run firms (like Jan) are, however, sometimes willing to pay a premium for self-employment (ie to be their own bosses) and may therefore be willing to continue with their business activities even if they do not make (or expect) a normal profit. Others may only be willing to go into business on their own if they expect to make more than a normal profit. CH A P T ER 9 B A C K G R OUND T O S UPPLY : PRODUCT ION A ND COST

147

BOX 9-4 PRIVATE COSTS AND SOCIAL COSTS An important distinction is that between private and social costs. The costs considered in the text are all private costs. However, the full costs to society of the production of any good or service (ie the social costs) may be greater or smaller than the private costs faced by firms due to the existence of external costs or benefits, collectively called externalities in production. External costs (also called negative externalities) are the costs borne by someone other than the firm(s) producing the good. For example, if a chemical firm dumps waste in a river or pollutes the air, society bears costs additional to those borne by the firm. Likewise, the heavy vehicles that travel on our national roads cause serious damage to the roads, atmospheric pollution, traffic congestion and noise. Residents of places like Secunda and Witbank and people staying near Johannesburg International Airport also regularly experience such costs. In all these cases social costs are greater than private costs. Where external costs are serious, society may impose charges or taxes on the firms that inflict the costs, thus forcing them to account for (and pay) at least part of the costs. In technical terms we say that such charges or taxes are an attempt to internalise the external costs. That is why, for example, heavy vehicles are subject to higher licence fees than motorcars, and on toll roads, large trucks are subject to much higher toll fees than other vehicles. External benefits (also called positive externalities) are the benefits enjoyed by someone other than the firm(s) producing the good. Beekeepers, for example, try to put their beehives in orchards on farms because the nectar from the fruit trees on the farms increases the production of honey. The farmers also benefit from the beehives because the bees stimulate pollination of the fruit. Another example is a firm that builds a swimming pool, sports fields or even a golf course that can also be enjoyed by non-employees of the firm. Where positive externalities occur, social costs are lower than private costs.

Implicit costs are those opportunity costs which are not reflected in actual payments. As economists, we distinguish between total (or accounting) profit, normal profit and economic profit: t Total (or accounting) profit is the difference between total revenue from the sale of the firm’s product(s) and total explicit costs. t Normal profit is equal to the best return that the firm’s resources could earn elsewhere and forms part of the cost of production. t Economic profit is the difference between total revenue from the sale of the firm’s product(s) and total explicit and implicit costs (ie the total economic, or opportunity, costs of all resources, including normal profit). We thus have: Accounting profit =total revenue–total explicit costs Economic profit =total revenue–total costs (explicit and implicit), including normal profit These relationships are illustrated in Figure 9-1. Economic profit is the additional return to the owners of the firm, over and above the opportunity cost of their own inputs (ie over and above normal profit). Economic profit is sometimes called excess profit, abnormal profit, supernormal profit or pure profit. It is equal to the amount by which revenue exceeds the opportunity cost of all the resources used in production. If the firm’s total sales revenue (or gross income) exceeds its total economic costs, the firm makes economic profit; if total revenue equals total economic costs, the firm makes normal profit; and if total economic costs exceed total revenue, the firm makes an economic loss (ie negative economic profit).

9.3 Production in the short run To analyse the supply decisions of firms, we have to study their profit-maximising behaviour. Profit, we know, depends on revenue and cost, so to understand firms’ behaviour we have to examine both revenue and cost. Cost, in turn, is determined by the prices and productivity of the various inputs used in the production process. Thus to examine cost we first have to examine the physical relationship between the quantity of inputs and the quantity of outputs produced using the inputs. In the next section we add the prices of inputs and examine the cost of production. Production is the physical transformation of inputs into output. Some goods and services (the inputs) are combined to produce other goods and services (the output). The inputs typically consist of factors of production 148

C HA P T E R 9 BA CKGROUND TO SUPPLY: PRODUCTI ON A N D COST

FIGURE 9-1 Economic profit and accounting profit

Economic profit

Implicit costs (including normal profit)

Total revenue

Economic costs

Accounting profit

Explicit costs (accounting costs)

Accounting costs (explicit costs only)

Economic profit is equal to total revenue minus economic costs (based on the opportunity cost principle). Economic (opportunity) costs are the sum of explicit and implicit costs and include a normal profit to the entrepreneur. Accounting profit is equal to total revenue less accounting (explicit) costs.

and intermediate inputs. An intermediate input is any good or service other than the basic factors of production (natural resources, labour, capital and entrepreneurship) which is used to produce something else (eg screws, nails and hinges for making furniture, flour for producing bread, or parts assembled into an electric toaster or a computer). To keep matters simple, we use the term “product” for a good or a service throughout this chapter. Remember that we have defined the short run as a period in which at least one of the inputs is fixed. A fixed input is thus an input whose quantity cannot be altered in the short run. By contrast, a variable input is one whose quantity can be changed in the short run (as well as the long run). In analysing production in the short run we make the following simplifying assumptions: t 5IFmSNQSPEVDFTPOMZone product. t "MMVOJUTPGBHJWFOJOQVUBSFJEFOUJDBMPShom*ogeneous. t 5IFJOQVUTDBOCFVTFEJOinfinitely divisible amounts. t 5IFUFDIOJDBMSFMBUJPOTIJQCf*ckFFOJOQVUTBOEPVUQVU DBMMFEUIFproduction function, is given and therefore cannot be changed. t 5IFprices of the product and of the inputs are given. t 5IFmSNVTFTfixed inputs and one variable input. These simplifying assumptions enable us to construct a general theory of supply. Once we have established the general theory, we can relax the assumptions in order to examine specific cases. Let us assume that a typical firm is represented by a farmer with a fixed quantity of land on which he or she produces maize, using labour as the variable input. You will probably worry about the absence of other essential inputs, such as seed and implements (eg spades, shovels, ploughs and tractors). To keep matters simple, we assume that the land (the fixed input) comes with a fixed quantity of seed, picks, spades, shovels and so on. Another of our simplifying assumptions is that all units of a given input are hom*ogeneous (or identical). In this example, this means, for example, that all the labourers are equally intelligent, strong and diligent, and work equally hard. We said that a fixed input is an input of which the quantity cannot be changed in the short run. But how long is the short run? Economists define it as the period which is so short that it is impossible to vary the quantity of at least one input! This definition might be regarded as a prime example of circular reasoning, but it is simply a way of saying that the exact time period is not important and that the length of the short run may differ from case to case. In our example of a maize farmer, land is a fixed factor of production, because it cannot be varied during the growth season. In the short run, a firm can expand output only by increasing the quantity of its variable inputs. However, the fixed inputs place an absolute limit on the quantity of output that the firm can produce (ie at some point output cannot be increased further by increasing the quantity of the variable inputs). The relationship between inputs and output is called a production function. CH A P T ER 9 B A C K G R OUND T O S UPPLY : PRODUCT ION A ND COST

149

The short-run production function For a given state of technology, there is a relationship between the quantity of inputs and the maximum output that can be obtained from these inputs. This relationship is called the production function and can be expressed in the form of a table (or schedule), an algebraic equation or a graph. The production function depends on the state of technology. When technology changes, the production function also changes. To many people, technology is synonymous with equipment (eg computers). In the economist’s language, however, technology refers to specific kinds of knowledge that can be used in production processes. A new technique can, for example, enable a firm to combine inputs differently and obtain a higher level of output with the same amount of inputs. Our maize farmer’s simple production function is presented as a schedule in Table 9-1. The first column shows how many units of land the farmer uses. Since we are examining the short run, the quantity of land (the fixed input), remains constant at 20 units. Various quantities of labour can be combined with this fixed quantity of land. Some possible quantities are indicated in the second column. The third column shows the maximum quantities of output (in tons) that can be produced with the various combinations of the two inputs, given the current state of technology. In economics, we refer to these figures as total product (TP). Note that product is expressed in physical units, not in money terms. The production function (or schedule) shows that if no labour TABLE 9-1 Production schedule of a maize farmer is applied to the 20 units of land, no maize will be produced. The with one variable input production function further shows that if one unit of labour is Units of Units of labour Total product employed on 20 units of land, 16 tons of maize can be produced. land (N) (tons) The production function shows that with the current pool of TP knowledge, no more than 16 units of the product can be produced 20 0 0 with this specific combination of inputs. 20 1 16 The rest of the table shows the total product (TP) that can be 20 2 44 produced with other combinations of land and labour. 20 3 78 The production schedule can also be presented in the 20 4 113 form of a graph. The total product of labour in Table 9-1 is 20 5 145 presented graphically in Figure 9-2(a). The quantity of labour 20 6 171 is measured on the horizontal axis and the total product 20 7 190 on the vertical axis. The quantity of land is not shown, but 20 8 200 we know it remains constant at 20 units. You will find Figure 20 9 200 20 10 187 9-2(a) a bit further on – for reasons that will become obvious, we place Figure 9-2(a) with Figure 9-2(b). You can see clearly from the table as well as from the graph that as the quantity of labour is increased, total product (TP) increases from zero at an increasing rate, then starts increasing at a decreasing rate until a maximum point is reached, after which TP declines. Although this is a hypothetical production function, it has been found that total product TP follows this general trend in many practical situations. In fact, this S-shape of the total product curve reflects actual production functions so frequently that economists have formulated a “law” to express it. This is called the law of diminishing returns, or the law of diminishing marginal returns.

The law of diminishing returns The law of diminishing returns (which was stated more than two centuries ago by the French writer Turgot) can be explained using our example of a maize farmer. One person with a pick, shovel, spade and tractor cannot cultivate 20 units of land very well in one season. In other words, if only one unit of labour (one person) is combined with the land, the land will not be utilised properly. If a second unit of labour is added to the first, the land will be cultivated more thoroughly and the total product will be higher. As the quantity of labour is increased, the initial benefits are gradually exhausted. All the possible savings from the division of labour have been gained and the addition of more labour brings no more savings of this kind. It is at this point that diminishing returns begin to set in. In our example, all the land will be properly utilised at some point, and adding more labour will not enable better cultivation. If still more units of labour are added, the workers may get into each other’s way, slowing down instead of speeding up the work. To formulate the law of diminishing returns more formally, we need first to explain average product and marginal product.

150

C HA P T E R 9 BA CKGROUND TO SUPPLY: PRODUCTI ON A N D COST

Average and marginal product The average product (AP) of the variable input is simply the average number of units of output produced per unit of the variable input. It is obtained by dividing total product (TP) by the quantity of the variable input (N). AP is shown in column 5 of Table 9-2. The first three columns of Table 9-2 contain the same information as Table 9-1. The marginal product (MP) of the variable input is the number of additional units of output produced by adding one additional unit (the marginal unit) of the variable input. As a marginal concept, MP is similar to all other marginal concepts. The marginal product of labour in our example is indicated in the fourth column of Table 9-2. The first unit of labour produces 16 tons of maize (ie the employment of the first unit of labour raises the total product from zero to 16 tons). The marginal product of the first unit of labour is thus 16 – 0 = 16 tons, as shown in column 4 between zero and the first unit of labour. The total product of the first two units of labour is 44 tons of the product. Employing a second unit of labour therefore adds 28 tons to total product, that is, the marginal product of the second unit of labour is 44 – 16 = 28 tons, as shown in column 4 between the first and the second unit of labour. The highest marginal product shown in the table, namely 35 tons, occurs when the fourth unit of labour is employed. The marginal product of the fifth unit of labour is less than 35 tons. Once the maximum marginal product has been reached, it keeps on declining. The ninth unit of labour adds nothing to total product (ie the marginal product of nine units of labour is equal to zero). The marginal products of additional units of labour are negative, which means that their employment causes total product to decline! The state of technology places a limit on the total output that can be achieved by combining the variable input with the fixed input. Once that limit is exceeded, the workers get in each other’s way, are given jobs too specialised to keep them occupied all day, or get on each other’s nerves! Column 5 indicates the average product of labour. The first unit of labour produces 16 tons of maize. Its average product is thus 16 ÷ 1 = 16 tons, as shown in column 5 opposite the first unit of labour. The average product of two units of labour is 44 ÷ 2 = 22 tons, and so on. The highest average product (29 tons) is reached when 5 units of labour are employed. The figures in column 5 clearly show that AP increases until the fifth labourer is employed and then declines to only 18,7 tons when ten labourers are employed. The information in columns 4 and 5 of Table 9-2 is depicted in Figure 9-2(b). The units of labour are shown on the horizontal axis and the average and marginal product of labour on the vertical axis. The curves show the average and marginal product of labour. The scale on the horizontal axis is the same as that used in Figure 9-2(a). Figure 9-2(b) is placed directly below Figure 9-2(a), so we can compare the trends of the total product, the average product and the marginal product of labour. Note, however, that the scales on the vertical axes of the graphs are not the same. The scale is more “stretched out” in the bottom graph, so we can see the movements in the average and marginal product more clearly. TABLE 9-2 Production schedule of a maize farmer with one variable input 1

2

3

4

5

Units of land

Units of labour (N)

Total product (tons) TP

Marginal product (tons) MP

Average product (tons) AP

20

20

1

16

20

2

44

20

3

78

20

4

113

20

5

145

20

6

171

20

7

190

20

8

200

20

9

200

20

10

187

CH A P T ER 9 B A C K G R OUND T O S UPPLY : PRODUCT ION A ND COST

16 28 34

32 26 19 10 0 13

0 16 00 22 00 26 00 28 25

28 50 27 14 25 00 22 22 18 70

151

FIGURE 9-2 Total, average and marginal product of labour (a)

200

TP

100 50 0

(b)

AP, MP

150

N 2

4 6 8 Units of labour

10

Product per unit of labour

Total product (units)

TP

40 20

AP N N

0 2 –20

4

6

8

10 MP

Units of labour

In (a) we show the total product of labour TP, while the average and marginal product of labour (AP and MP) are shown in (b). The same scales are used on the horizontal axes in (a) and (b) but the vertical scale in (b) is larger (more “stretched out”) than in (a). TP increases as long as MP is positive, but falls once MP becomes negative. AP increases if MP is above it, reaches a maximum where it is equal to MP and then falls when MP is below it.

We are now ready to formulate the law of diminishing returns more formally: The law of diminishing returns states that as more of a variable input is combined with one or more fixed inputs in a production process, points will eventually be reached where first the marginal product, then the average product and finally the total product start to decline.

Comparison of total, average and marginal product

t AP and MP are shaped like inverted “U”s, that is, as the variable input is increased, they rise at declining rates, reach maximum points and then decrease at increasing rates. t MP reaches its maximum before AP reaches its maximum. t #FGPSFAP reaches a maximum, MP lies above AP. t MP equals AP at the maximum point of AP. t "GUFSUIFNBYJNVNQPJOUPGAP is reached, MP lies below AP.

152

Product per unit of labour

The effect of the law of diminishing returns is illustrated in Table 9-2 and Figure 9-2. Applied to our example, the law states that as more units of labour are combined with the fixed quantity of land, first the marginal product, then the average product and finally the total product will start to decline. The table and the graphs confirm that the marginal product (MP) starts to decline first (after the fourth unit of labour has been employed), followed by the average product (AP) (after the fifth unit of labour) and then the total product (TP) (after the ninth unit of labour). Because we only indicate full units of labour, the curves FIGURE 9-3 Marginal product and average product are not smooth or stepless, but consist of successive straight AP, MP lines. Had we shown fractions of units of labour, the straightline sections would be curved. The total, average and marginal product of labour are all based on the same basic information and are therefore interrelated. If the total product curve is smooth, the average and marginal curves are also smooth, as shown in Figure 9-3. In this case the curves display the following mathematical characteristics (see also Box 9-5): AP MP 0

N

N

Units of labour

Marginal product MP increases, reaches a maximum and then decreases. When MP is greater than average product AP, AP also increases; when MP is lower than AP, AP falls. MP is equal to AP where AP is at a maximum.

C HA P T E R 9 BA CKGROUND TO SUPPLY: PRODUCTI ON A N D COST

BOX 9-5 TOTAL, AVERAGE AND MARGINAL PRODUCT: A MATHEMATICAL INTERPRETATION The short-run production function can be written as: TP =f(N ) =total product where TP N = quantity of labour This is simply another way of stating that total product is a function of labour input, ceteris paribus. The average product of labour (AP ) can be expressed as the ratio of total product (TP ) to labour input (N ): AP =TP/N which simply means that average product is equal to total product divided by the number of units of labour employed. The marginal product (MP ) of labour can be expressed as follows: MP =d(TP )/dN where d(TP ) =a small change in TP dN =the corresponding small change in labour input 5IF DIBOHFT EFOPUFE CZ UIF TZNCPM E BSF TP TNBMM UIBU NBUIFNBUJDJBOT TBZ UIFZ UFOE UPXBSET [FSP *O mathematical terms the MP function is the slope or first derivative of the TP function. If the TP function is a continuous function, the MP function will also be a continuous function. In such a case MP differs slightly from the MP in Table 9-2, which was calculated by dividing relatively large changes in TP (ie ΔTP ) by discrete changes in labour input (ΔN ).

From the table and graphs we can also see that as long as marginal product MP exceeds average product AP, average product increases. Similarly, when marginal product is less than average product, average product declines. These relationships are the same as those explained in Box 7-1.

9.4 Costs in the short run Recall from Section 9.2 that economic costs are opportunity costs, which include both explicit costs and implicit costs. In the short run a firm’s costs consist of fixed costs and variable costs.

Fixed and variable costs As we explained earlier, the quantity of a fixed input cannot be altered in the short run. In our example of the maize farmer, the quantity of land remains constant at twenty units. We assume that the rental of a unit of land, that is, the price of using it for a specific period, is given and represents the opportunity cost of the land. The cost of using the land is therefore fixed. It does not change when the quantity of labour is varied and the total product changes. Fixed cost is thus formally defined as cost that remains constant irrespective of the quantity of output produced. Fixed costs are sometimes also called overhead costs, indirect costs or unavoidable costs. The quantity of a variable input can be varied in the short run. In the case of our hypothetical maize farmer, labour is the variable input. We assume that the price of a unit of labour is given and represents its opportunity cost. The cost of labour to the firm for the relevant period can therefore be calculated by multiplying the number of units of labour employed, by the price per unit of labour. Variable cost is formally defined as cost that changes when total product changes – it represents the cost of the variable input(s). Variable costs are sometimes called direct costs, prime costs or avoidable costs. Table 9-3 illustrates the relationship between the short-run production function and the short-run total cost function of the maize farmer. The first three columns simply repeat the information in Table 9-1. Assume that the cost of a unit of the fixed input (land) for the growth season is R450. Therefore, the cost of the twenty units is 20 u R450 = R9 000, irrespective of the quantity of maize produced during the growth season or the quantity of the variable input (labour) used. This represents the total fixed cost (TFC) of producing the various quantities of output indicated in column 3. TFC is shown in column 4 of Table 9-3. Columns 3 and 4 together are known as the total fixed cost schedule, because they indicate the relationship between total product (TP) and total fixed cost (TFC).

CH A P T ER 9 B A C K G R OUND T O S UPPLY : PRODUCT ION A ND COST

153

TABLE 9-3 Total, fixed and variable cost schedules of a maize farmer 1

2

3

4

5

6

Units of land

Units of labour

Total product (units) TP

Total fixed cost (R) TFC

Total variable cost (R) TVC

Total cost (R) TC

20 20 20 20 20 20 20 20 20 20 20

0 1 2 3 4 5 6 7 8 9 10

0 16 44 78 113 145 171 190 200 200 187

9 000 9 000 9 000 9 000 9 000 9 000 9 000 9 000 9 000 9 000 9 000

0 2 400 4 800 7 200 9 600 12 000 14 400 16 800 19 200 21 600 24 000

9 000 11 400 13 800 16 200 18 600 21 000 23 400 25 800 28 200 30 600 33 000

Suppose the price of a unit of labour for the full growth season is R2 400. To obtain the cost of labour, we have to multiply the units of labour by the price per unit of labour. Because there is only one variable input in this example, the result represents the total variable cost (TVC) of producing the various quantities of output indicated in column 3. It is shown in column 5 of Table 9-3 and increases as the quantity of labour increases. Columns 3 and 5 together are known as the total variable cost schedule, because they indicate the relationship between total product (TP) and total variable cost (TVC). The total cost (TC) is simply the sum of the total fixed cost TFC and the total variable cost TVC associated with each level of production. TC is shown in column 6 of Table 9-3 and increases as the quantity of labour employed increases. Columns 3 and 6 together are known as the total cost schedule, because they indicate the relationship between total product TP and total cost TC.

Average and marginal cost To analyse a firm’s output decisions, we have to examine average cost and marginal cost, which were introduced in Section 9.2. Since there are three measures of total cost, there are also three measures of average cost: t average fixed cost AFC (ie total fixed cost TFC divided by total product TP ) t average variable cost AVC (ie total variable cost TVC divided by total product TP) t average cost AC (ie total cost TC divided by total product TP ) Note that average cost is obtained by dividing total cost by total product (not by units of labour, as in the case of average product). Average cost AC is sometimes called average total cost and abbreviated to ATC. However, to avoid this somewhat cumbersome term, we simply refer to average cost AC. Just remember that AC includes average fixed cost and average variable cost. The various average cost figures for our hypothetical maize farmer are given in Table 9-4. Columns 1 to 5 are the same as columns 2 to 6 of Table 9-3. Note that average fixed cost AFC is the same (R45) whether eight or nine units of labour are used, because their total product is the same. However, when ten units of labour are used, AFC increases, because total product decreases. Average variable cost AVC is higher when nine units of labour are employed than when eight units are used, because total product is the same in both cases but it costs more to employ 9 units than 8 units of labour. This also applies to average cost AC. Marginal cost MC is the increase in total cost when one additional unit of output is produced. Theoretically, we could distinguish between marginal fixed cost, marginal variable cost and marginal (total) cost. However, total fixed cost remains unchanged when total product increases. Therefore, marginal fixed cost is always zero and marginal cost is always equal to marginal variable cost. By definition, marginal cost only consists of variable cost. Whereas average cost could easily be calculated from the total cost figures in Table 9-4, it is not so straightforward to calculate marginal cost from such figures. The reason is that the total product figures in the table do not increase by one unit at a time, as required by the definition of marginal cost. The marginal cost must be approximated by first calculating the increases in total cost and total product, and then dividing the increase in total cost by the increase in total product, as shown in Table 9-5. Marginal cost is not defined for ΔTP = 0, that is, in 154

C HA P T E R 9 BA CKGROUND TO SUPPLY: PRODUCTI ON A N D COST

TABLE 9-4 Short-run total and unit cost schedule for a firm with one variable input 1

2

3

4

5

6

7

8

9

Units of labour

Total product (units)

Total fixed cost (R)

Total variable cost (R)

Total cost (R)

Average fixed cost (R)

Average variable cost (R)

Average cost (R)

Marginal cost (R)

TP

TFC

TVC

TC

AFC

AVC

AC

MC

0 16 44 78 113 145 171 190 200 200 187

9 000 9 000 9 000 9 000 9 000 9 000 9 000 9 000 9 000 9 000 9 000

0 2 400 4 800 7 200 9 600 12 000 14 400 16 800 19 200 21 600 24 000

9 000 11 400 13 800 16 200 18 600 21 000 23 400 25 800 28 200 30 600 33 000

562 50 204 55 115 38 79 65 62 07 52 63 47 37 45 00 45 00 48 13

150 00 109 09 92 31 84 96 82 76 84 21 88 42 96 00 108 00 128 34

712 50 313 64 207 69 164 60 144 83 136 84 135 79 141 00 153 00 176 47

0 1 2 3 4 5 6 7 8 9 10

150 00 85 71 70 59 68 57 75 00 92 31 126 32 240 00

our example when nine units of labour are employed. Nor is it defined when total cost increases, but total product decreases. Therefore MC is not shown for these cases. For purposes of comparison, the marginal cost figures are included in column 9 of Table 9-4. The average and marginal cost schedules are collectively referred to as unit cost schedules, to distinguish them from the total cost schedules. The unit cost schedules are depicted in Figure 9-4. Total product is measured on the horizontal axis and cost on the vertical axis. Note that the AVC, AC and MC curves are U-shaped. Recall that the average and marginal product curves, AP and MP, are shaped like inverted “U”s (see Figure 9-3). As in the case of total, average and marginal product, from which the cost functions are derived, there are mathematical relationships between the cost functions. If the total cost curve is smooth, the average and marginal cost curves will also be smooth, as in Figure 9-5. In this case the curves will exhibit the following properties (see also Box 9-6): TABLE 9-5 Calculation of marginal cost Total product TP 0 16 44 78 113 145 171 190 200 200 187

Increase in total product 'TP

Total cost (R) TC

16 28 34 35 32 26 19 10 0 13

9 000 11 400 13 800 16 200 18 600 21 000 23 400 25 800 28 200 30 600 33 000

CH A P T ER 9 B A C K G R OUND T O S UPPLY : PRODUCT ION A ND COST

Increase in total cost (R) 'TC

Marginal cost (R) 'TC/'TP

2 400 2 400 2 400 2 400 2 400 2 400 2 400

150 00 85 71 70 59 68 57 75 00 92 31 126 32 240 00

2 400 2 400 2 400

155

FIGURE 9-4 Marginal and average cost

FIGURE 9-5 Marginal and average cost R

R

MC

250

MC

200 150

AC

100

AVC

50

AFC

Q Q 25

50

Unit cost (rand)

Unit costs (rand)

300

AC

75 100 125 150 175 200

AVC

Total product (units)

AFC

There is only one marginal cost curve MC, but there are three average cost curves: average fixed cost AFC (which falls as output increases), average variable cost AVC (which falls, reaches a minimum and then increases), and average total cost (or simply average cost) AC (which also falls, reaches a minimum and then increases). Both AVC and AC reach a minimum where they are intersected by MC.

0 Output (units per time period)

Q (or TP)

This set of smooth unit cost curves illustrates the conclusions reached in the text. Note, in particular, that MC intersects AC and AVC at their minimum points.

t AFC is L-shaped. In other words, as TP increases from zero, it starts at a very high value and then keeps on declining until the maximum TP is reached. t AVC, AC and MC are U-shaped. In other words, as TP increases from zero, they start at high values, decline at decreasing rates, reach minimum points and then increase at increasing rates. t AC lies above AFC and AVC, because it includes them both. The vertical distance between the AC and AFC curves is equal to AVC, and the vertical distance between the AC and AVC curves is equal to AFC. As AFC declines, the vertical distance between AC and AVC becomes smaller. s -# reaches its minimum point before AVC. t AVC reaches its minimum point before AC. t MC equals AVC and AC at their respective minimum points. Before these points are reached, MC lies below AVC and AC respectively. Beyond these points, that is, when total product is increased further, MC lies above AVC and AC respectively. Rather obvious implications of these relationships, which are also clear from the table and graphs, are that while AVC or AC is decreasing, it exceeds MC, and that while AVC or AC is increasing, it is exceeded by MC. All the properties of the unit cost curves are illustrated in Figure 9-5.

The relationship between production and cost in the short run To conclude this section, we emphasise the relationship between the product (or productivity) of the input(s) and the cost of the output(s) in the short run, as illustrated in Figure 9-6. One of the most important points to emerge from this chapter is that a firm’s cost structure depends on the productivity of its inputs (given the prices of the inputs). In other words, the shape of the unit cost curves is determined by the shape of the unit product curves. In Figure 9-6(a) we show the average and marginal product of labour, which each represents a relationship between the quantity of labour (N) (on the horizontal axis) and output per unit of input (on the vertical axis). Marginal product (MP) reaches a maximum of MP1 at N1 units of labour. The average product of labour (AP) reaches a maximum of AP1 where it intersects the marginal product (MP) at N2 units of labour. In Figure 9-6(b) we show the unit costs of the firm. Marginal cost (MC) and average variable cost (AVC) each represent a relationship between total output (Q) (on the horizontal axis) and unit cost (on the vertical axis). Marginal cost (MC) reaches a minimum of MC1 at a total output level of Q1. Average variable cost (AVC) reaches a minimum of AVC1 where it intersects marginal cost (MC) at an output level of Q2.

156

C HA P T E R 9 BA CKGROUND TO SUPPLY: PRODUCTI ON A N D COST

FIGURE 9-6 The relationship between production (or productivity) and cost

In (a) we show the average and marginal product of labour and in (b) we show the corresponding average variable cost and marginal cost of production. The maximum of MP (at N 1) corresponds to the minimum of MC (at Q 1). Similarly, the maximum of AP (at N 2) corresponds to the minimum of AVC (at Q 2).

Although the axes in Figures 9-6(a) and (b) are different, the output of Q1 in (b) is the total output produced by N1 units of labour in (a). Likewise, total output Q2 in (b) is the total output produced by N2 units of labour in (a). The figure shows how the inversely U-shaped product curves give rise to the U-shaped cost curves. Both are grounded in the law of diminishing returns. When marginal product (MP) is increasing, the marginal cost (MC) of producing a good is falling, but when MP declines, MC increases.

9.5 Production and costs in the long run What is meant by the long run? In the long run there are no fixed inputs – all the inputs (including all the factors of production) are variable. In the long run there are thus no fixed costs – all the costs are variable. Moreover, the law of diminishing returns does not apply. You will recall that this law refers to a situation where additional units of a variable input are added to the fixed inputs.2 There is therefore no compelling reason why long-run cost curves should exhibit the same features as short-run curves. In production theory the long run is defined as a period that is long enough for the firm to change the quantities of all the inputs in the production process as well as the process itself. That would mean, for example, that there is enough time for the firm to build a new factory, to install new machines and to use new techniques of production. The actual time period required to vary all the inputs or to adopt new production techniques depends on the characteristics of the firm, the production processes and the institutional environment, and it may differ quite significantly from case to case. A street hawker, for example, might be able to vary all inputs (eg the stock for sale, the location and the hours worked) on a daily basis. A clothing manufacturer will take longer, while a cement producer or an aluminium producer might require several years to expand production by extending an existing factory or building an additional one. In the long run, a firm has to take decisions about the scale of its operations, the location of its operations and the techniques of production it will use. All these decisions will affect the cost of production.

Returns to scale The term “returns to scale” refers to the long-run relationship between inputs and output. Returns to scale are measured by varying all the inputs by a certain percentage and comparing the resulting percentage change in production with the percentage change in the inputs. Three possible situations can be distinguished: 2. Note also that marginal product has no meaning in long-run production theory since the marginal product of an input can only be derived if all the other inputs are held constant. CH A P T ER 9 B A C K G R OUND T O S UPPLY : PRODUCT ION A ND COST

157

BOX 9-6 TOTAL, AVERAGE AND MARGINAL COST: A MATHEMATICAL INTERPRETATION The total cost function TC can be written as: TC = f(TP ) where TC = total cost TP = total product This simply states that total cost is a function of total output. Since TP is expressed in units of output, we can also substitute it with Q (ie the quantity of output). Thus TP = Q. Average cost (AC ) can be expressed as the ratio of total cost (TC ) to total product (TP ) (or Q ): AC = TC/TP (or TC/Q ) In the same way, average fixed cost (AFC ) and average variable cost (AVC ) can be expressed as functions of total fixed cost (TFC ) and total variable cost (TVC ) respectively: AFC = TFC/TP (or TFC/Q ) AVC = TVC/TP (or TVC/Q ) Marginal cost (MC ) can be expressed as follows: MC = d(TC )/d(TP ) (or d(TC )/dQ ) where d(TC) = a small change in TC d(TP) = the corresponding small change in TP (= dQ) In mathematical terms the MC function is the slope or first derivative of the TC function. If the TC function is a continuous function, the MC function will also be a continuous function. In such a case MC differs slightly from the MC in Table 9-5, which was calculated by dividing large changes in TC (ie ΔTC ) by relatively large changes in the quantity produced (ΔTP ).

Constant returns to scale. This is where a given percentage increase in inputs will give rise to the same percentage increase in output (eg a doubling of the inputs leads to a doubling in output). Increasing returns to scale. This is where a given percentage increase in inputs will lead to a larger percentage increase in output (eg a doubling of the inputs leads to a trebling of output). Decreasing returns to scale. This is where a given percentage increase in inputs will give rise to a smaller percentage increase in output (eg a 100% increase in the inputs leads to a 50% increase in output). Returns to scale refer to a situation in which all inputs increase by the same proportion. Decreasing returns to scale (a long-run concept) should therefore not be confused with diminishing marginal returns (a short-run concept). Remember that in the case of diminishing marginal returns only the variable input increases. The concept of increasing returns to scale is closely linked to that of economies of scale, a related but different concept.

Economies of scale A firm experiences economies of scale if costs per unit of output fall as the scale of production increases. This may or may not be the result of increasing returns to scale. If a firm experiences increasing returns to scale from its inputs, it means that the firm will be using smaller and smaller amounts of inputs per unit of output as it expands. Ceteris paribus, this means that unit cost will decrease as output increases. In other words, economies of scale will be experienced. As explained above, returns to scale refer to the relationship between inputs and output and specifically to a situation where all the inputs are increased by the same percentage. Economies of scale, on the other hand, refer to the relationship between costs and output and specifically to a decline in unit costs as output expands. Economies of scale are thus different from returns to scale. Moreover, economies of scale can be achieved by increasing the quantity or productivity of only one or a few of the inputs, and where all the inputs are increased they do not necessarily have to increase by the same percentage.

158

C HA P T E R 9 BA CKGROUND TO SUPPLY: PRODUCTI ON A N D COST

FIGURE 9-7 Alternative long-run average cost curves (b) Diseconomies of scale

(a) Economies of scale R

(c) Constant costs R

R

LRAC

Q Output per period

Cost per unit

Cost per unit

Cost per unit

LRAC

Q

LRAC

Output per period

Q Output per period

If cost per unit of output falls as output increases, economies of scale are experienced, as illustrated in (a). If cost per unit of output increases as output increases, diseconomies of scale are experienced, as illustrated in (b). The third possibility, illustrated in (c), is that cost per unit of output remains constant as output increases.

A firm might also experience diseconomies of scale. This occurs when unit costs rise as output increases. Economies and diseconomies of scale can be classified into two broad groups: internal and external economies or diseconomies. Internal economies or diseconomies are those pertaining to the specific firm – they can be controlled by the firm. External economies or diseconomies, on the other hand, are outside the firm’s control and relate to conditions and events in the industry and the broader environment within which the firm operates.

Economies of scope Sometimes it is cheaper to produce two related goods in a single firm rather than in two separate firms. Motorcars and trucks, for example, use common inputs such as technical knowledge, engines and transmissions. The major motor vehicle manufacturers therefore usually produce both cars and trucks. The cost savings achieved by producing related goods in one firm rather than in two separate firms are called economies of scope. A good South African example is Sasol, which produces a wide range of related products.

In the long run all inputs are variable and economies or diseconomies of scale may be experienced. Long-run average cost (LRAC) curves can therefore take various shapes. The three basic possibilities are illustrated in Figure 9-7. If economies of scale are experienced, the firm’s LRAC curve will fall as output (ie the scale of production) increases. This is illustrated in Figure 9-7(a). On the other hand, if diseconomies of scale predominate, LRAC will rise as output increases. This is illustrated in Figure 9-7(b). The third possibility is that neither economies nor diseconomies of scale are experienced. In this case, as illustrated in Figure 9-7(c), the LRAC curve is horizontal, indicating constant costs.

CH A P T ER 9 B A C K G R OUND T O S UPPLY : PRODUCT ION A ND COST

FIGURE 9-8 A typical long-run average cost curve R LRAC

Cost per unit

Long-run average costs

Economies of scale

Constant costs

Diseconomies of scale

Q Output per period

As long as economies of scale are experienced, average costs fall. This is followed by a range of output over which average costs remain constant. At some level of output diseconomies of scale may set in resulting in an increase in average costs.

159

It is often assumed that, as a firm expands, it will initially experience economies of scale, illustrated by a downwardsloping LRAC curve. If it continues to expand, however, at some stage all economies of scale will have been achieved and the curve will flatten out, indicating constant long-run average cost. At some further stage the firm will get so large that diseconomies of scale set in, illustrated by a rising LRAC curve. At this stage, for example, technical and financial economies will begin to be offset by the managerial problems of running a giant undertaking. These three stages can be combined to yield a saucer-shaped LRAC curve, as in Figure 9-8. If the rising part of such an LRAC curve does not occur, or can be ignored, we speak of an L-shaped LRAC curve. The LRAC curves in Figures 9-7 and 9-8 are based on three key assumptions, namely that: t UIFQSJDFTPGUIFGBDUPSTPGQSPEVDUJPOBSFHJWFO t UIFTUBUFPGUFDIOPMPHZBOEUIFRVBMJUZ PSQSPEVDUJWJUZ PGUIFGBDUPSTPGQSPEVDUJPOBSFHJWFO t mSNTBMXBZTDIPPTFUIFMFBTUDPTUDPNCJOBUJPOPGUIFGBDUPSTPGQSPEVDUJPOUPQSPEVDFFBDIMFWFMPGPVUQVU If, for example, there is a general increase in wages, costs will increase (ceteris paribus), illustrated by an upward shift of the LRAC curve. On the other hand, if new cost-saving techniques are introduced, costs will decrease (ceteris paribus), illustrated by a downward shift of the LRAC curve.

Long-run marginal cost The relationship between long-run average cost (LRAC) and long-run marginal cost (LRMC) is similar to that between any other set of average and marginal variables. If there are economies of scale, the LRMC curve must lie below the LRAC curve. The only way in which LRAC can decline is if the cost of additional units of output (LRMC) is lower than the current average cost, thus pulling it down. This is illustrated in Figure 9-9(a). On the other hand, if there are diseconomies of scale, the LRMC curve must lie above the LRAC curve. The only way in which LRAC can increase is if the cost of additional units of output (LRMC) is higher than the current average cost, thus pulling it up. This is illustrated in Figure 9-9(b). If constant costs are experienced, the LRAC curve is horizontal. In this case the LRMC curve must coincide with the LRAC curve. The only way in which LRAC can remain unchanged FIGURE 9-9 The relationship between long-run average and marginal costs (a) Economies of scale (declining LRAC)

(b) Diseconomies of scale (increasing LRAC) R

R

Cost per unit

Cost per unit

LRMC

LRAC

LRAC

LRMC Q

Output per period (c) Constant costs (constant LRAC)

Q

Output per period

(d) Economies of scale, followed by diseconomies of scale (saucer-shaped LRAC) R

R

Cost per unit

Cost per unit

LRMC LRAC = LRMC

Q Output per period

LRAC

Q Output per period

Parts (a) to (d) illustrate the four possible relationships between long-run average cost (LRAC) and long-run marginal cost (LRMC).

160

C HA P T E R 9 BA CKGROUND TO SUPPLY: PRODUCTI ON A N D COST

FIGURE 9-10 A long-run average cost curve for three scales of production

FIGURE 9-11 The long-run average cost curve when short-run fixed inputs can be varied by any amount (in the long run)

R

SRAC1 SRAC2

SRAC3

LRAC

Cost per unit

Cost per unit

R

LRAC

Q

0 Quantity per period

Q Q

0 Quantity per period

The short-run average cost curves for the three scales of production are SRAC 1, SRAC 2 and SRAC 3. The longrun average cost curve LRAC is obtained by combining the lowest parts of the three short-run curves.

When there are many possible plant sizes, there are many short-run average cost curves, illustrated by the thin lines. By joining the lowest portions of these curves, a smooth long-run average cost curve LRAC is obtained.

is if the cost of any additional units of output (LRMC) is the same as the current average cost, thus keeping it constant. This is illustrated in Figure 9-9(c). If economies of scale are experienced only up to a certain level of output, followed by diseconomies of scale, the relationship between LRMC and LRAC will be the same as that explained in Section 9.4. As long as LRMC is below LRAC, LRAC will fall. When LRMC is above LRAC, LRAC will rise. It follows, therefore, that the LRMC curve will intersect the LRAC curve at the minimum of the LRAC curve. This is illustrated in Figure 9-9(d). If the LRAC curve has a horizontal section, as in Figure 9-8, then LRMC will coincide with LRAC along that section before rising above LRAC.

The relationship between long-run and short-run average cost curves In the long run all inputs are variable. The firm can choose to use any quantity per period of, for example, land, buildings, machinery and management. In the long run there are thus no total or average fixed costs. In the short run at least one input is fixed and the firm is thus faced with total and average fixed costs. The long run can be envisaged as a set of alternative short-run situations between which the firm can choose. In each short-run situation the firm faces a given set of short-run costs. In Figure 9-10 SRAC1, SRAC2 and SRAC3 represent three different short-run average cost curves, each pertaining to a situation in which at least one input is fixed. For example, SRAC1 may refer to a situation where the firm operates only one factory. If the firm builds another factory, the average cost curve (for the two factories) is SRAC2 and if it builds a third factory, then average cost (for the three factories) is represented by SRAC3. The long-run average cost (LRAC) curve is obtained by joining the lowest portions of the three short-run average cost curves, as indicated by the heavy line in the figure. The firm will never operate at the light portions of the SRAC curves in the long run because it will always be able to reduce costs by changing the size of the firm. The heavy line in Figure 9-10 thus represents the long-run average cost which illustrates the least-cost method of production for each level of output. The LRAC curve is called an envelope cur ve since it envelops a series of SRAC curves. If we assume that the short-run fixed inputs can be varied by any amount in the long run, there will be an unlimited number of SRAC curves and the LRAC curve will become smooth, as in Figure 9-11.

CH A P T ER 9 B A C K G R OUND T O S UPPLY : PRODUCT ION A ND COST

161

9.6 Summary In this chapter we examined production and cost in both the short run and the long run. The basic differences between the short run and the long run are summarised in Table 9-6. In the following two chapters we use the concepts explained in this chapter to analyse the decisions of firms in different types of market.

TABLE 9-6 The short run and long run in production and cost theory: a summary Period or run on run

Inputs used ixed ariable ll ariable

Costs associated with inputs

Definition of costs

ixed cos s ariable cos s ariable cos s only

ixed cos s do no c an e as ou pu c an es ariable cos s c an e as ou pu c an es ariable cos s c an e as ou pu c an es

IMPORTANT CONCEPTS Principal–agent problem Profit Revenue Cost Production function Total revenue (TR) Average revenue (AR) Marginal revenue (MR) Long run Short run Fixed inputs Variable inputs Opportunity cost Explicit costs Implicit costs Accounting costs

162

Economic costs Private costs Social costs Externalities Accounting profit Normal profit Economic profit Total cost (TC) Average cost (AC) Marginal cost (MC) Law of diminishing (marginal) returns Total product (TP) Average product (AP) Marginal product (MP) Fixed cost Variable cost

Total fixed cost (TFC) Total variable cost (TVC) Average fixed cost (AFC) Average variable cost (AVC) Long-run costs Returns to scale Economies of scale Diseconomies of scale Internal economies External economies Economies of scope Long-run average cost (LRAC) Long-run marginal cost (LRMC) Envelope curve

C HA P T E R 9 BA CKGROUND TO SUPPLY: PRODUCTI ON A N D COST

Market structure 1: Overview and perfect competition

Chapter overview 10.1 Market structure: an overview 10.2 The equilibrium conditions (for any firm) 10.3 Perfect competition 10.4 The demand for the product of the firm 10.5 The equilibrium of the firm under perfect competition 10.6 The supply curve of the firm and the market supply curve 10.7Long-run equilibrium of the firm and the industry under perfect competition 10.8 Perfect competition as a benchmark 10.9 Concluding remarks Important concepts

By perfect competition I propose to mean a state of affairs in which the demand for the output of the individual seller is perfectly elastic. JOAN ROBINSON

The system of free competition is a rather peculiar one. Its mechanism is one of fooling entrepreneurs. It requires the pursuit of maximum profit in order to function, but it destroys profits when they are actually pursued by a larger number of people. OSKAR LANGE

The price of monopoly is upon every occasion the highest which can be got. ADAM SMITH

Learning outcomes Once you have studied this chapter you should be able to 䡲 explain the theoretical differences between the four market structures 䡲 explain the equilibrium conditions for any firm 䡲 list the conditions which have to be met for perfect competition to exist 䡲 explain the demand curve facing the firm under perfect competition 䡲 explain the short-run equilibrium of the firm under perfect competition 䡲 explain the long-run equilibrium of the firm and the industry under perfect competition

In Chapter 9 we examined a firm’s costs of production and distinguished between total, marginal and average cost. We also distinguished between the short run and the long run and showed how a firm’s costs are determined by the prices and productivity of the factors of production that it uses. In this chapter and the next one we derive the equilibrium positions of firms. We want to determine whether or not it is profitable for a firm to produce and, if so, what quantities of the product the firm should supply at different prices of the product. To do this, we have to consider demand conditions as well. In other words, we have to consider both supply and demand. We assume that firms aim to maximise profit (the difference between revenue and cost). Cost was examined in detail in Chapter 9 but we still have to examine revenue in more detail. Total revenue (TR) from the production and sale of a product is calculated by multiplying the quantity sold (Q) by the price (P) of the product. But the price of the product (and therefore also revenue) depends on the structure of the market. In this book we introduce you to the four standard forms of market structure: perfect competition, monopoly, monopolistic competition and oligopoly. In this chapter we define the four types, discuss the equilibrium conditions for any firm and then focus on the position of a firm which operates under conditions of perfect competition. The other three types of market structures are examined in Chapter 11. 163

10.1 Market structure: an overview The behaviour of a firm depends on the features of the market in which it sells its product(s) and on its production costs. The major organisational features of a market are called the structure of the market (or market structure). These features include the number and relative sizes of sellers and buyers, the degree of product differentiation, the availability of information and the barriers to entry and exit. Although we discuss four different market structures in this chapter and the next, you might want to think of a continuum as shown in Figure 10-1. At the one extreme is perfect competition, followed by monopolistic competition, oligopoly and (at the other extreme) pure monopoly. All markets fit in somewhere between the two extremes. The key features of the four different types of market structure are summarised in Table 10-1. Eight features or criteria are listed in the first column and the remaining four columns show the position of each market type in respect of each criterion. Perfect competition is discussed in this chapter and serves as a benchmark against which the other market structures, which are discussed in Chapter 11, can be compared. FIGURE 10-1 Market structures er ec compe i ion

onopolis ic compe i ion

li opoly

onopoly

aximum

ero De ree o compe i ion

As we move from perfect competition to monopoly, the degree of competition declines, from maximum to zero. All markets fit in somewhere along this continuum.

TABLE 10-1 Summary of market structures Feature/ criterion

164

Perfect competition

Monopolistic competition

Oligopoly

Monopoly

Number of firms

So many that no firm So many that each firm can influence the market thinks others will not price detect its actions

So few that each firm One must consider the others’ actions and reactions

Nature of product

hom*ogeneous/ standardised

Heterogeneous/ differentiated

hom*ogeneous or heterogeneous

A unique product with no close substitutes

Entry

Completely free

Free

Varies from free to restricted

Completely blocked

Information

Complete

Incomplete

Incomplete

Complete

Collusion

Impossible

Impossible

Possible

Irrelevant

Firm’s control over the price of the product

None

Some

Considerable, but less than in monopoly

Considerable, but limited by market demand and the goal of profit maximisation

Demand curve for the firm’s product

Horizontal (perfectly elastic)

Downward-sloping

Downward-sloping, may be kinked

Equals market demand curve: downward-sloping

Long-run economic profit

Zero (normal profit only)

Zero (normal profit only)

May be positive

May be positive

CHAPT E R 1 0 MA RKET STRUCTURE 1: OVERVI EW A ND PERFECT COM P E T I T I ON

We now discuss each of the criteria briefly. Note that this is only a preliminary overview. We discuss perfect competition later in this chapter, and mono-poly, monopolistic competition and oligopoly in Chapter 11. t 5IFmSTUDSJUFSJPOJTUIFnumber of firms, which varies between one and many. The actual number of firms as such is not particularly significant – the most important question is the behaviour of firms, in particular whether or not an individual firm can influence the price at which its product is sold. Perfectly competitive firms are all price takers (ie they cannot influence the price of their product), but monopolists and imperfectly competitive firms are price makers or price setters (ie they each have some influence on the price of their product). t 5IFTFDPOEDSJUFSJPOJTUIFnature of the product. The product may be hom*ogeneous (identical, standardised) or heterogeneous (differentiated, non-standardised). The distinction between hom*ogeneous and heterogeneous products is not based on technical differences between them. As we emphasise in Chapter 11, consumers ultimately decide whether two products are identical or different. Two brands of the same product may be technically identical, but if they are different in the eyes of buyers, the product is classified as a heterogeneous or differentiated product. t 5IFUIJSEGBDUPS entr y (or mobility), refers to the ease or difficulty with which firms can enter and exit the market. Entry varies from perfectly free (under perfect competition) to totally blocked (under monopoly). t 5IFGPVSUIGBDUPSJTUIFinformation (or degree of knowledge) about market conditions available to market participants. Perfect competitors are assumed to possess full information (or perfect knowledge) of market conditions, which implies that there is no uncertainty under perfect competition. This assumption also applies in the case of monopoly. Under monopolistic competition and oligopoly, however, firms have incomplete information (ie they operate under conditions of uncertainty). t 6OMJLFUIFmSTUGPVS UIFOFYUGPVSDSJUFSJBJO5BCMFBSFOPUCBTJDBTTVNQUJPOT CVUMPHJDBMDPOTFRVFODFTPG the basic assumptions. The first of these (ie the fifth criterion in the table) is collusion. Collusion occurs when two or more sellers enter into an agreement, arrangement or understanding with each other to limit competition between or among themselves. Collusion, which is common only in oligopoly, is discussed in Chapter 11. t 8FIBWFBMSFBEZUPVDIFEPOUIFTJYUIDSJUFSJPOJOUIFEJTDVTTJPOPGUIFOVNCFSPGmSNT"QFSGFDUMZDPNQFUJUJWF firm has no control over the price of its product (ie it is a price taker), whereas other firms have a varying degree of control (but never absolute control) over the prices of their products. They are price makers or price setters. t 5IFTFWFOUIDSJUFSJPO UIFGPSNPSshape of the demand curve for the product of the firm, is related to the previous one. Under perfect competition the individual firm (as a price taker) is faced with a horizontal (or perfectly elastic) demand curve for its product (at the level of the market price). In contrast, other firms are all faced with downward-sloping demand curves for their products and therefore have some scope for “making” or “setting” their own prices. The price elasticities of the demand for their products can, however, vary quite significantly. t 5IF MBTU DSJUFSJPO JT UIF possibility of earning an economic profit in the long run. In this chapter we explain that perfectly competitive firms do not earn any economic (or supernormal) profits in the long run (only normal profits). This also applies to the case of monopolistic competition. However, as we explain in Chapter 11, monopolistic and oligopolistic firms may earn economic profits in the long run. Table 10-1 provides a concise summary of the most important features of the four basic market structures. You should refer back to the table while studying this chapter and the next. The various elements of the table are explained in more detail as we proceed. There are two basic equilibrium conditions for profit maximisation that all firms operating in any market structure must adhere to. These two conditions are now explained, and form the basis for the rest of our analysis.

10.2 The equilibrium conditions (for any firm) Firms operating in any market structure want to maximise profit. Economic profit is the difference between revenue and cost (which includes normal profit). To examine the behaviour of firms, we therefore have to examine and combine their revenue and cost structures. Once these are known, two decisions have to be taken: t 5IFmSNNVTUmSTUEFDJEFXIFUIFSPSOPUJUJTXPSUIQSPEVDJOHBUBMM6OEFSDFSUBJODPOEJUJPOTJUXPVMEOPUCF in the firm’s interest to produce (but rather to shut down its operations). t *G JU JT XPSUI QSPEVDJOH UIF mSN NVTU EFUFSNJOF UIF MFWFM PG QSPEVDUJPO JF UIF RVBOUJUZ BU XIJDI QSPmU JT maximised (or losses minimised). These decisions have to be taken in any firm. We now take a look at the two rules for profit maximisation which apply to all firms, irrespective of the market conditions under which they operate. C HA P TER 10 M A R K E T S T RUCT URE 1: OV E RV IE W AND PERFECT COMPETI TI ON

165

The shut-down rule The first rule is that a firm should produce only if total revenue is equal to, or greater than, total variable cost (which includes normal profit). This is often called the shut-down (or close-down) rule, but it can also be called the start-up rule because it does not just indicate when a firm should stop producing a product – it also indicates when a firm should start (or restart) production. The shut-down rule can also be stated in terms of unit costs – a firm should produce only if average revenue (ie price) is equal to, or greater than, average variable cost. In the long run all costs are variable. Production should therefore take place in the long run only if total revenue is sufficient to cover all costs of production. This is quite straightforward. But what about the short run, when certain costs are fixed? Should production occur only if total revenue is sufficient to cover total costs (ie total fixed costs and total variable costs)? The answer is no. Once a firm is established, it cannot escape its fixed costs. Fixed costs are incurred even if output is zero (ie if the firm does not produce at all). If the firm can earn a total revenue greater than its total variable costs (or an average revenue greater than its average variable costs), then the difference can help cover some of the unavoidable fixed costs of the firm. It would be advisable for the firm to maintain production in the short run, even though it is operating at an economic loss. If total revenue is just sufficient to cover total variable costs (ie if average revenue is equal to average variable costs) it is immaterial whether or not the firm continues production – its loss will be the same in both cases (ie equal to its fixed costs). In such conditions firms tend to continue production in order to retain their employees and clients. If total revenue is not sufficient to cover total variable costs (ie if average revenue is lower than average variable cost), the firm will not produce, because to do so will result in a loss greater than its fixed costs. In other words, the firm’s losses will be minimised by not producing at all.

The profit-maximising rule The second rule is that firms should produce that quantity of the product such that profits are maximised, or losses minimised. Since the same rule applies for profit maximisation and loss minimisation, we usually refer to profit maximisation only, and we do not always mention that the aim is also to minimise losses. Profit maximisation can be explained in terms of total revenue (TR) and total cost (TC) or in terms of marginal revenue (MR) and marginal cost (MC). Since profit is the difference between revenue and cost it is obvious that profits are maximised where the positive difference between total revenue and total cost is the greatest. However, it is usually more useful to express the profit-maximisation condition in terms of revenue and cost per unit of production. The rule is that profit is maximised where marginal revenue (MR) is equal to marginal cost (MC). To understand why profits are maximised where MR = MC, it is useful to consider what happens if MR is not equal to MC. If marginal revenue MR (ie the addition to revenue as a result of the production of an extra unit of the product) is greater than marginal cost MC (ie the cost of producing that extra unit), the firm is still making a profit on the last (extra) unit produced. The firm can therefore add to its total profit by expanding its production until no extra profit is made on the last unit produced, that is, until the revenue earned from the last unit (MR) is equal to the cost of producing the last unit (MC). At that quantity the firm’s profit is maximised. If the firm continues producing beyond that point, the cost of producing each additional unit of output (MC) will be greater than the revenue gained from selling it (MR). In other words, the firm will make a loss on the production of each additional unit of output and its profit will therefore decrease. Profits are maximised when marginal revenue MR is just equal to marginal cost MC. The different possibilities may be summarised as follows: t 8IFOMR is greater than MC (ie MR > MC), output should be expanded. t 8IFOMR is equal to MC (ie MR = MC), profits are maximised. t 8IFOMR is lower than MC (ie MR < MC), output should be reduced. As we mentioned earlier, this rule and the shut-down rule apply to any firm, irrespective of the type of market in which it operates – see Box 10-1. We now apply these rules to a firm operating in a perfectly competitive market.

10.3 Perfect competition We start our analysis of the behaviour of firms by assuming that there is perfect competition in the goods market. Recall from earlier chapters that a market consists of all the buyers (demanders) and sellers (suppliers) of the good or service concerned. Also recall that competition occurs on each side of the market. In the goods market the buyers compete to obtain the good and the sellers compete to sell the good to the buyers. 166

CHAPT E R 1 0 MA RKET STRUCTURE 1: OVERVI EW A ND PERFECT COM P E T I T I ON

BOX 10-1 SHORT-RUN DECISIONS OF A FIRM, THE IRRELEVANCE OF SUNK COSTS AND THE IMPORTANCE OF THE MARGINAL PRINCIPLE In the long run, when all the inputs are variable, a firm will continue to produce only if total revenue is sufficient to cover total cost (including normal profit). In the short run, however, the situation is somewhat more complicated and can be summarised as follows: Yes Price = AR

Continue to produce

Is it above AC? No

Yes

Continue to produce

Is it above AVC? No

Shut down

The basic difference between short-run and long-run costs is that while certain costs are fixed in the short run, all costs are variable in the long run. A s n c st is a cost incurred in the past that cannot be changed by current decisions and cannot be recovered. The firm’s short-run fixed costs are an example of sunk costs. The firm cannot recover these costs by temporarily stopping production. The firm’s fixed costs are sunk in the short run and the firm can ignore these costs when deciding whether or not to produce and how much to produce. Only the variable costs, over which the firm has control, should be taken into account. This explains why a number of large firms continue to produce despite reporting huge losses. Take a big airline, for example. If the airline has bought a number of aircraft and cannot resell them, this cost is a sunk cost in the short run. The opportunity cost of a flight includes only the variable costs of fuel, the wages of pilots and flight attendants, et cetera. As long as the total revenue from flying exceeds these variable costs, the airline should continue to operate. The same principle applies to any other firm. Sunk costs should not be taken into account in short-run decisions. Sunk costs are also important in everyday life. The principle of “let bygones be bygones” or “don’t cry over spilt milk” applies to many spheres of life. For example, if you buy an expensive pair of shoes and they turn out to be very uncomfortable you should not continue wearing them simply because you paid a lot of money for them. Likewise, if you purchase shares in a company at (say) R10,00 each and the price falls to R6,00, you should not take the R10,00 that you paid for them into account when deciding whether to keep or sell the shares. Your decision should be based only on the expected future price of the shares. If there is no prospect of an increase, you should sell them. The examples in this box illustrate one of the most important lessons of economics: a a s at t e PDUJLQDOFRVWVDQGPDUJLQDOEHQHÀWVRIGHFLVLRQVDQGLJQRUHSDVWRUVXQNFRVWV. Do not complain about yesterday’s losses. Calculate the extra costs you will incur by any decision, and weigh these against its advantages. Always base decisions on marginal costs and marginal benefits.

Perfect competition occurs when none of the individual market participants (ie buyers or sellers) can influence the price of the product. The price is determined by the interaction of demand and supply and all the participants have to accept that price. In perfectly competitive markets all the participants are therefore price takers – they have to accept the price as given and can only decide what quantities to supply or demand at that price.

Requirements Perfect competition exists if the following conditions are met: t 5IFSFNVTUCFBlarge number of buyers and sellers of the product – the number must be so large that no individual buyer or seller can affect the market price. Each firm, for example, supplies only a fraction of the total market supply. t 5IFSFNVTUCFno collusion between sellers – each seller must act independently. t "MMUIFHPPETTPMEJOUIFNBSLFUNVTUCFidentical (ie the product must be hom*ogeneous). There should therefore be no reason for buyers to prefer the product of one seller to the product of another seller.

C HA P TER 10 M A R K E T S T RUCT URE 1: OV E RV IE W AND PERFECT COMPETI TI ON

167

t #VZFSTBOETFMMFSTNVTUCFDPNQMFUFMZGSFFUPFOUFSPSMFBWFUIFNBSLFUoUIJTDPOEJUJPOJTVTVBMMZSFGFSSFEUP as complete freedom of entr y and exit. There must be no barriers to entry in the form of legal, financial, technological, physical or other restrictions which inhibit the free movement of buyers or sellers. t "MMUIFCVZFSTBOETFMMFSTNVTUIBWFperfect knowledge of market conditions. For example, if one firm raises its price above the market price, it is assumed that all the buyers will know that the other firms are charging a lower price and will therefore not buy anything from the firm that is charging a higher price. t 5IFSFNVTUCFno government inter vention influencing buyers or sellers. t "MMUIFfactors of production must be perfectly mobile. In other words, labour, capital and the other factors of production must be able to move freely from one market to another. These conditions are clearly very restrictive and it is hardly surprising that no market meets all the requirements GPS QFSGFDU DPNQFUJUJPO "QQSPYJNBUJPOT UP UIFTF DPOEJUJPOT BSF GPVOE JO BHSJDVMUVSF GPS FYBNQMF JO UIF NBSLFUTGPSNBJ[F XIFBU GSVJUBOEWFHFUBCMFT"OJOEJWJEVBMGBSNFSJTVTVBMMZSFHBSEFEBTUIFCFTUFYBNQMFPGB perfect competitor. Other markets for fresh produce, like meat and fish markets, may also approximate perfect competition. However, producers often form cooperatives to control the supply of agricultural products, and government also tends to intervene in markets for agricultural products. The closest approximations to perfect competition are probably in the international commodity markets where there are thousands of sellers and ultimately millions of buyers; entry and exit are easy; the products are graded and those in a given grade are therefore identical; the participants are well informed about market conditions; and they can purchase or sell large quantities of the product at the ruling market price. In these markets no individual firm has any market power – all the firms are price takers. Financial markets, like the JSE, also approximate perfect competition. There are many buyers and sellers, the goods (eg shares in a company) are hom*ogeneous and anyone is free to participate.

Relevance But why study perfect competition if it is only approximated in a small percentage of markets? t 8FDBOMFBSOBMPUBCPVUUIFGVODUJPOJOHPGUIPTFNBSLFUT QBSUJDVMBSMZJOBHSJDVMUVSF XIFSFUIFDPOEJUJPOTGPS perfect competition come close to being satisfied. t 1FSGFDUDPNQFUJUJPOSFQSFTFOUTBDMFBSBOENFBOJOHGVMTUBSUJOHQPJOUGPSBOBMZTJOHUIFEFUFSNJOBUJPOPGQSJDF and output. t 1FSGFDUDPNQFUJUJPOSFQSFTFOUTBTUBOEBSEPSOPSNBHBJOTUXIJDIUIFGVODUJPOJOHPGBMMPUIFSNBSLFUTDBOCF compared. This is common practice in all branches of science – even in the natural sciences it is common to use a model based on a set of very restrictive conditions as a yardstick against which other situations can be compared. t "HPPELOPXMFEHFPGUIFGVODUJPOJOHPGQFSGFDUMZDPNQFUJUJWFNBSLFUT BMPOHXJUIJOGPSNBUJPOBCPVUDPOEJUJPOT in a particular market (including how it deviates from perfect competition), is often sufficient for a meaningful analysis of that market. The model of perfect competition can therefore always be useful, provided it is used with sufficient care. Note, however, that the adjective “perfect” in perfect competition does not mean that it is necessarily the most desirable form of competition – it simply signifies the highest or most complete degree of competition.

10.4 The demand for the product of the firm Under perfect competition the price of a product is determined by supply and demand. The individual firm is a price taker and can sell any quantity at the market price. No firm will charge a price higher than the prevailing market price because it will then lose all of its customers. Nor will a firm gain anything by charging a price that is lower than the existing market price, since it can sell as many units of its output as it wishes at the market price. Under perfect competition the individual firm is faced by a demand curve which is horizontal (or perfectly elastic) at the existing market price. We call this curve the demand curve for the product of the firm. It is sometimes also called the firm’s sales curve, the firm’s demand curve, or the demand curve facing the firm. The position of the individual firm under perfect competition is illustrated in Figure 10-2. The graph on the left shows that the price of the product (P1) is determined in the market by the forces of supply (SS) and demand (DD). The position of the individual firm is shown in the graph on the right. The firm can sell any quantity at the prevailing market price. "UIJHIFSQSJDFTUIFRVBOUJUZEFNBOEFEXJMMGBMMUP[FSP TJODFDPOTVNFSTXJMMCFBCMFUPQVSDIBTFUIFQSPEVDUBUB price of P1 from any other supplier). Nor will the firm charge a lower price than P1 because it can sell all its output at a price of P1. The horizontal curve at P1 is the demand curve for the product of the firm. 168

CHAPT E R 1 0 MA RKET STRUCTURE 1: OVERVI EW A ND PERFECT COM P E T I T I ON

FIGURE 10-2 The demand curve for the product of the firm under perfect competition P

P

Price per unit

D

S

P1

P1

AR =

D

S 0

AR = MR

Q Quantity per period

Q

Quantity per period

The graph on the left shows that the price of the product is determined in the market by demand and supply. The firm can sell its whole output at that price. This is indicated by the horizontal line on the right. This line is the demand curve for the product of the firm. It is also called the firm’s sales curve, the firm’s demand curve, or the demand curve facing the firm. The firm’s average revenue (AR) and marginal revenue (MR) are equal to the price of the product.

Under perfect competition the firm receives the same price for any number of units of the product that it sells. Its marginal revenue (MR) and average revenue (AR) are thus both equal to the market price, that is, MR = AR = P. We know that a firm’s total revenue (TR) is equal to the price of the product (P) multiplied by the quantity sold (Q), ie TR = P × Q (= PQ). Under perfect competition the price is given, thus for each additional unit that the firm sells, total revenue will increase by an amount equal to the price of the product. This is simply another way of stating that MR = AR = P. In Box 10-2 the relationships between price, total revenue, marginal revenue and average revenue are explained with the aid of a numerical example. BOX 10-2 TOTAL, MARGINAL AND AVERAGE REVENUE UNDER PERFECT COMPETITION: A NUMERICAL EXAMPLE Suppose a firm operates under conditions of perfect competition and that the market price of its product is R20 per unit. The firm is a price taker and its total, average and marginal revenue for the first five units sold will be as follows: Quantity (units) Q

Price per unit (rand) P

Total revenue (rand) TR (= PQ)

20

1

20

20

2

20

40

3

20

60

4

20

80

5

20

100

Marginal revenue (rand) MR (= ΔTR/ΔQ = P) 20 20 20 20 20

Average revenue (rand) AR (= TR/Q =P) 0 20 20 20 20 20

The same relationships will apply at greater quantities. The demand curve facing the firm is a horizontal line at the level of the market price (R20), similar to the one illustrated in the right-hand part of Figure 10-2.

C HA P TER 10 M A R K E T S T RUCT URE 1: OV E RV IE W AND PERFECT COMPETI TI ON

169

10.5 The equilibrium of the firm under perfect competition We examine the equilibrium (or profit-maximising) position of the firm under conditions of perfect competition. We combine the cost curves derived in Chapter 9, the two profit-maximising rules which apply to all firms, and the demand curve for the product of the firm, to examine the equilibrium of the firm under perfect competition. We know that such a firm is a price taker (ie it has no control over the market price). The firm can only decide to sell or not to sell at the ruling price. This means that the firm does not have to make any pricing decisions – it can only choose the output (quantity) at which it will maximise its profits (or minimise its losses). That quantity, we have seen, is where the positive difference between total revenue TR and total cost TC is at a maximum, or (which amounts to the same thing) where marginal revenue MR is equal to marginal cost MC, provided, of course, that average revenue AR (= P) is at least equal to short-run average variable cost AVC (the shut-down rule). In Section 10.2 we explained that any firm maximises its profit (or minimises its losses) where marginal revenue MR is equal to marginal cost MC. The marginal revenue of a firm in a perfectly competitive market was derived in Section 10.4. In Figure 10-2 we showed that the firm’s marginal revenue MR is equal to the market price P of the product (since each unit of output has to be sold at the market price, over which the individual firm has no control). The profit-maximising rule in the case of a perfectly competitive firm can therefore also be stated as P = MC (since MR = P). Marginal cost was explained in Chapter 9. Recall that the marginal cost curve is U-shaped. However, as explained in Box 10-3, only the rising part of the MC curve is relevant to our analysis. We now use a numerical example to explain why profit is maximised when MR (or P, in this case) is equal to MC. Suppose a firm produces a product which it sells in a perfectly competitive market where the price is R10 per unit. The firm’s fixed cost amounts to R5. (The numbers have been kept small to keep the example as simple as possible.) The firm’s daily output, revenue and cost are summarised in Table 10-2. The marginal revenue MR and marginal cost MC of the firm are also shown graphically in Figure 10-3. The marginal cost MC of the first unit produced is R4, indicated by point d in Figure 10-3. This is lower than the marginal revenue of R10 (ie the price of the product). The production of the first unit thus adds R6 (ie R10 – R4) to the profit of the firm. Likewise, the MC of the second unit (R6) is also lower than the MR of the second unit (R10). The production of the second unit thus adds R4 (ie R10 – R6) to the profit of the firm. Point c in Figure 10-3 shows that the production of the third unit costs R8. It can be sold for R10 and the firm will therefore add to its profit by producing the third unit. The extra profit will be R2 (ie R10 – R8). For the fourth unit MC = MR (= P) = R10 and the firm therefore makes no further profit. This serves as a signal that the point of maximum profit has been reached. If the firm produces 5 units of the product, MC (indicated by e in Figure 10-3) will be R12, which is greater than MR. The firm’s profit will thus decline by R2 (ie R10 – R12) if a fifth unit of the product is produced. This example confirms the conclusion reached earlier, namely that a firm should expand its production as long as MR > MC , up to the point where MR = MC (at which point profit will be maximised). If it continues producing beyond that point, MR will be lower than MC and the firm’s profit will fall.

TABLE 10-2 Revenue and cost of a hypothetical firm Quantity of the product

Price per unit (R)

Total revenue (R)

Marginal revenue (R)

Total cost (R)

Marginal cost (R)

Total profit (R)

Q

P

TR

MR

TC

MC

TR–TC

10

5 10

1

10

10

2

10

20

3

10

30

10

9

40

5

10

50

8 7 10 33

10

170

1 5

23 10

10

6

15 10

4

–5 4

7 12

45

5

CHAPT E R 1 0 MA RKET STRUCTURE 1: OVERVI EW A ND PERFECT COM P E T I T I ON

The firm’s profit position can be illustrated clearly by adding average cost AC to the diagram showing average revenue AR, marginal revenue MR and marginal cost MC. Recall, from Chapter 9, that average cost AC consists of average fixed cost AFC and average variable cost AVC. The firm’s profit per unit of output (or average profit) is equal to the difference between average revenue AR and average cost AC"TMPOHBTAR is greater than AC the firm is earning an economic profit. When AC is equal to AC the firm only earns a normal profit. Recall, from Chapter 9, that normal profit is included in the firm’s cost. Figure 10-4 shows the average revenue AR, marginal revenue MR, average cost AC and marginal cost MC of a firm under perfect competition. AR and MR are both equal to the price P of the product and are represented by the same horizontal line at the level of the market price (as shown in Figure 10-2). The cost structure of the firm is the same as that explained in Chapter 9. In Figure 10-4 we show three different possibilities. The same set of unit cost curves is used throughout, but we show three different market prices, and therefore three different AR and MR curves. In Figure 10-4(a) the market price is P1. This is, of course, equal to the firm’s AR and MR. Profit is maximised where MR (= P1, in this case) is equal to MC. This occurs at a quantity of Q1 "U Q1 the firm’s average revenue AR (= P1) is greater than its average total cost AC (which is indicated as C1 on the vertical axis). The firm thus makes an economic profit (or supernormal profit) per unit of production of P1 – C1. The firm’s total profit is given by the shaded area C1P1E1M, which is equal to the profit per unit of output (P1 – C1) multiplied by the quantity produced (Q1 "MUFSOBUJWFMZ UIFBSFBSFQSFTFOUJOHUPUBMQSPGJUDBOCF obtained by subtracting the firm’s total cost from its total revenue. The firm’s total revenue is equal to the price of the product P1 multiplied by the quantity produced (and sold) Q1. This is equal to the area 0P1E1Q1. Similarly, the firm’s total cost is obtained by multiplying its average cost C1 by the quantity produced Q1. This is equal to the area 0C1MQ1. The difference between these two areas is the shaded area C1P1E1M, which represents the firm’s total economic profit. In Figure 10-4(b) the market price (and therefore also the firm’s AR and MR) is P2. It is equal to MC at the point where MC intersects AC (ie at the minimum point of AC). The corresponding level of output is Q2"UUIBUMFWFMPG output AR is equal to AC (and TR = TC) and the firm therefore does not earn an economic profit. It does, however,

FIGURE 10-3 Marginal revenue and marginal cost of a firm operating in a perfectly competitive market R e MC Profit decreasing

Marginal revenue, cost (rand per unit)

12 d

10 Profit increasing

8

MR = P

MR = P

c

b

6 a 4

Profit-maximising level of output 2

Q 1

2

3

4

5

Quantity per period

Marginal revenue MR is equal to the price P of the product. Marginal cost MC increases as more units of the product are produced. Profit is maximised where MR (or P) = MC, that is, at an output level of 4 units. At lower levels of production, profit can be increased by expanding production. If more than 4 units of the product are produced, profit starts falling.

C HA P TER 10 M A R K E T S T RUCT URE 1: OV E RV IE W AND PERFECT COMPETI TI ON

171

BOX 10-3 MARGINAL COST AND PROFIT MAXIMISATION In this box we explain why profits are only maximised along the rising part of the marginal cost curve MC. From Chapter 9 we know that MC usually falls before it starts rising. We also know that under perfect competition, marginal revenue MR is equal to the price P of the product. MR therefore stays constant at all levels of output. It follows that MR can be equal to MC at two different levels of output, as in the figure below, and the question arises as to what is signified at these two points (corresponding to quantities Q1 and Q2 in the figure). The answer is that losses are maximised at a quantity such as Q1 (ie where MR = MC along the falling part of the MC curve), while profits are maximised at a quantity such as Q2 (ie where MR = MC along the rising part of the MC curve).

Price, revenue and cost per unit

R

MC

P

MR

Q Q1

Q2

Quantity (units) per period

The latter case (ie the position at Q2) is explained in detail in the text. All that remains is to show why losses are maximised at a point such as Q1 and why we can therefore ignore the declining part of the marginal cost curve. The answer is quite simple. At any point to the left of Q1, MC lies above MR. In other words each additional unit of the product up to Q1 costs more to produce than the price at which it can be sold. At this stage the firm’s AR is also less than its AC. Up to Q1 the firm therefore only makes losses. At quantities greater than Q1 marginal revenue MR is greater than marginal cost MC and the firm starts earning a profit on each additional unit produced. The total loss of the firm thus starts to fall, and can turn into a total profit at some stage (ie where AR becomes greater than AC). At Q2 the firm’s profit is maximised (or its losses minimised). It should be clear therefore that the falling part of the MC curve can be disregarded when we analyse the equilibrium position of the firm.

earn a normal profit, since all its costs, which include normal profit, are fully covered. Point E2 in Figure 10-4(b) is usually called the break-even point. In Figure 10-4(c) the market price (and therefore also the firm’s AR and MR) is equal to P3. MR or price is equal to MC at a quantity of Q3"UQ3 the firm’s average revenue AR is lower than its average cost AC. It therefore makes an economic loss per unit of output, equal to the difference between C3 and P3. The total economic loss is indicated by the shaded area P3C3ME3. Whether or not the firm should continue production will depend on the level of AR (ie P3) relative to the firm’s average variable cost AVC, which is not shown in the figure. If AR is greater than AVC, the firm will be able to recoup some of its fixed costs and should therefore continue producing in the short run. However, if AR is lower than AVC, the firm should close down in the short run, thereby restricting its losses to its fixed costs.

172

CHAPT E R 1 0 MA RKET STRUCTURE 1: OVERVI EW A ND PERFECT COM P E T I T I ON

FIGURE 10-4 Different possible short-run equilibrium positions of the firm under perfect competition

(a) Economic profit

C1

AC

E1

AR = MR M

Quantity Q1

(c) Economic loss P

MC AC

P2

E2

AR = MR

Unit revenue and cost

P1

(b) Normal profit only P

MC

Unit revenue and cost

Unit revenue and cost

P

AR

MC AC

M C3 P3

E3

Quantity Q2

AR = MR

Quantity Q3

In the short run a firm’s economic profit may be positive, zero or negative. In (a) we show a situation in which the firm makes an economic profit, equal to the shaded area. In (b) the firm just breaks even. It earns a normal profit but no economic profit. In (c) the firm incurs an economic loss, equal to the shaded area. If the price P (= AR) lies above the minimum AVC (not shown in the figure) the firm will continue production in the short run. If it lies below the minimum AVC, the firm will close down.

The situations illustrated in Figure 10-4 are also summarised in Figure 10-5 in the next section. The equilibrium condition of the firm under perfect competition may be summarised as follows: Profit is maximised (or loss minimised) when a firm produces an output where marginal revenue equals marginal cost, provided marginal cost is rising and lies above minimum average variable cost.

10.6 The supply curve of the firm and the market supply curve In the previous section we explained that a firm maximises its profits where marginal revenue (MR) is equal to marginal cost (MC), provided that average revenue AR (ie the price of the product) is sufficient to cover average variable cost (AVC). Under perfect competition, price P is equal to marginal revenue MR and average revenue AR. The firm will therefore produce the quantity where P is equal to MC, provided that this occurs where P is equal to, or greater than, AVC. The rising part of the firm’s MC curve above the minimum of AVC can thus be regarded as the firm’s supply curve. In Figure 10-5 this is illustrated by the part of the MC curve above point b. We show various quantities that will be supplied at different prices, and we also show the close-down point b and the break-even point d. The market supply curve is obtained by adding the supply curves of the individual firms horizontally. In Chapter 4 we simply assumed that the firm’s supply curve and the market supply curve slope upward from left to right. In the present chapter we have explained why this is the case. The supply curves slope upward because the marginal cost curves slope upward, that is, because marginal cost increases as output increases. (The marginal cost curves, in turn, slope upward because the marginal product curves slope downward – on account of the law of diminishing returns.) We are now also in a better position to explain changes in supply, which are illustrated by shifts of the market supply curve. In Chapter 4 we mentioned, for example, that supply will change if the number of firms change or if the prices of the factors of production (eg labour) change. Since the market supply curve is the sum of the individual supply curves, an increase in the number of firms will shift the market supply curve to the right, and a reduction in the number of firms will move the market supply curve to the left, ceteris paribus. If the price of a variable input (such as labour) changes, both marginal cost MC and average variable cost AVC will change. For example, if the price of labour (ie the wage rate) increases, MC and AVC will move upward and the market supply curve will also move upward (ie to the left), indicating a fall in supply (of each individual firm and in the market).

C HA P TER 10 M A R K E T S T RUCT URE 1: OV E RV IE W AND PERFECT COMPETI TI ON

173

So far we have examined only the position of an individual firm in the short run. We turn now to the long run and examine, in addition, the position of the industry (ie the collection of firms that supply a specific product in the market). In the long run, two things can change. First, new firms can enter the industry and existing firms can leave. Second, all factors of production become variable (recall the definition and analysis of the long run in the previous chapter) and existing firms earning economic profit in the short run may decide to expand their plant sizes to realise economies of scale. These two changes are now examined. Initially, we ignore changes in plant size and costs and focus only on the impact of entry and exit on the long-run equilibrium of the firm and the industry. After we have explained this, we use longrun cost curves to extend the analysis.

The impact of entry and exit on the equilibrium of the firm and the industry

FIGURE 10-5 The supply curve of the firm R

MC Break-even point

Revenue and cost (rand)

10.7 Long-run equilibrium of the firm and the industry under perfect competition

e P1

AVC d

P2

c

P3 P4

AC

b a

P5 Close-down point 0

Q Q4 Q3 Q2 Q1 Quantity per period

The rising portion of the firm’s marginal cost curve above the minimum of its average variable cost curve at point b is the firm’s supply curve. If the price is P5, the firm will not produce at all. If the price is P4, the firm will be at its close-down point (b) and it is immaterial if it shuts down or continues production. If the price is P3, the firm will minimise its economic losses by producing a quantity Q 3, corresponding to point c. If the price is P2, the firm will make normal profit (ie it will break even) at point d, which corresponds to a quantity Q 2. If the price is P1, the firm will maximise economic profit at point e, that is, it will produce a quantity Q 1.

In the previous two sections we saw that an individual firm can be in equilibrium in the short run where it makes an economic profit or an economic loss. These positions, however, are not sustainable in the long run under conditions of perfect competition. When firms are making economic profits, this will induce new firms to enter the industry and when this happens, the market (or industry) supply will increase, thus reducing the market price, ceteris paribus. Similarly, firms making economic losses will leave the industry in the long run, thus reducing the market (or industry) supply and raising the market price, ceteris paribus . The industr y will be in equilibrium in the long run only if all the firms are making normal profits. Only then will there be no inducement for new firms to enter the industry, or for existing firms to leave the industry. With complete freedom of entry and exit, there will always be some movement (ie disequilibrium) in the industry when firms are making economic profits or losses. Disequilibrium, and the process whereby equilibrium is reached, can be explained with the aid of a series of diagrams. We start, in Figure 10-6, by showing the long-run equilibrium of the firm and the industry. In Figure 10-6(a) we show that the individual firm is making only a normal profit. It is therefore covering all its costs (including normal profit). The firm is doing just as well as it could if its resources were employed elsewhere. There is thus no incentive for existing firms to leave the industry or for new firms to enter the industry. In Figure 10-6(b) we show the market demand and supply of the product, which determines the market price (and therefore the AR and MR of the individual firm). The vertical axes in (a) and (b) are exactly the same – both measure the price per unit of the product. The horizontal axes both measure quantities, but the horizontal scales are different since each firm supplies only a small, insignificant part of the whole market. In the figure this is indicated by using units on the horizontal axis in (a) and thousands of units on the horizontal axis in (b). (The reason why the price is labelled P2 will become obvious as we proceed.) In Figure 10-7 we show a situation in which the individual firm initially earns an economic profit. The initial demand and supply curves in (b) are D1 and S1 respectively, and the market price is P1. The individual firm in (a) makes an economic profit at E1 (ie at price P1). However, because the existing firms are making economic profits, new firms enter the industry, and the market (or industry) supply curve shifts to the right. This process will continue until the new supply curve is S2, and the market price is P2 (corresponding to the equilibrium point E2). "UE2 (ie at a price of P2) the individual firm earns only a normal profit and there is no reason for more new firms to enter the industry. The industry and each individual firm is in equilibrium at a price of P2. This corresponds to the equilibrium at price P2 in Figure 10-6.

174

CHAPT E R 1 0 MA RKET STRUCTURE 1: OVERVI EW A ND PERFECT COM P E T I T I ON

FIGURE 10-6 The firm and industry in long-run equilibrium (a) The firm

(b) The industry MC

P

P

S

Price per unit

AC

P2

AR = MR = P2

Q

Q2

D

Q

Quantity (units)

Quantity (thousands of units)

Equilibrium occurs when the price determined in the market (P2 in (b)) is just sufficient for the individual firm to earn a normal profit. This is shown in (a) where MR = MC and AR = AC at the same quantity (Q 2).

FIGURE 10-7 The individual firm and the industry when the firm initially earns an economic profit (a) The firm P

(b) The industry MC

P

S1

S2

Price per unit

AC E1

P1 P2

E2

E1 AR1 = MR1 = P1 AR2 = MR2 = P2

Q

0 Quantity (units)

E2

D1 0

Q

Quantity (thousands of units)

The original demand and supply curves in (b) are D 1 and S 1, yielding a price of P1. At P1 the individual firm earns an economic profit where MR 1 = MC, since AR > AC at that point (E 1). At E 1 the industry is in disequilibrium. The economic profits attract new firms to the industry, thus shifting the supply curve in (b) to S 2 in the long run. The price falls to P2, where industry equilibrium is established, since the individual firm is only earning a normal profit and there is no incentive for firms to enter or leave the industry.

C HA P TER 10 M A R K E T S T RUCT URE 1: OV E RV IE W AND PERFECT COMPETI TI ON

175

In Figure 10-8 we start off with a situation where the individual firm is making an economic loss. The initial demand and supply curves in (b) are D1 and S1 respectively, and the initial market price is P1"UP1 the individual firm makes an economic loss where MR1 = MC at E1. This loss, however, cannot be sustained in the long run and TPNFGJSNTMFBWFUIFJOEVTUSZ"TGJSNTMFBWFUIFJOEVTUSZ UIFNBSLFU PSJOEVTUSZ TVQQMZDVSWFTIJGUTUPUIF left. The process will continue until the new supply curve is S2 and the market price is P2 (corresponding to the equilibrium point E2 "UE2 (ie at a price of P2) the individual firm earns only a normal profit and there is no reason for more firms to leave the industry (or for new firms to enter the industry). The industry and each individual firm is in equilibrium at a price of P2. This corresponds to the equilibrium at price P2 in Figures 10-6 and 10-7. To summarise: economic profits in a competitive industry are a signal for the entry of new firms; the industry will expand, pushing the price down until the economic profits fall to zero (ie only normal profits are earned). Economic losses in a competitive industry are a signal for the exit of loss-making firms; the industry will contract, driving the market price up until the remaining firms are covering their total costs (ie until normal profits are earned).

The impact of changes in the scale of production on the equilibrium of the firm and the industry Until now we have assumed that the existing firms’ scale of production remains unchanged. In the long run, however, all factors of production are variable and existing firms can therefore change their scale of production. If an existing firm is earning an economic profit and it can realise economies of scale (ie if average cost can be reduced), it will expand its scale of production. This is illustrated in Figure 10-9. Initially, the firm is producing at scale 1, with short-run marginal cost SRMC1 and short-run average cost SRAC1. The market price is P1 and the firm maximises economic profit (indicated by the shaded area) by producing Q1 units of the product. In the long run all the factors of production are variable and the firm can realise economies of scale (ie reduce average costs) by expanding to scale 2, indicated by the new short-run marginal and average costs, SRMC2 and SRAC2 respectively. The firm expands since it will increase profits at the original market price (P1) if its average costs are reduced. However, the existence of positive economic profits in the industry attracts new entrants (as explained earlier) and also gives other existing firms an incentive to expand the

FIGURE 10-8 The individual firm and the industry when the firm initially makes an economic loss (a) The firm P

(b) The industry MC

P

S2

Price per unit

AC

S1

E2

E2 AR2 = MR2 = P2

P2 P1

E1

AR1 = MR1 = P1 E1 Q

0 Quantity (units)

D1 0

Q

Quantity (thousands of units)

The original demand and supply curves in (b) are D 1 and S 1, yielding a price of P1. At P1 the individual firm cannot cover all its costs and makes an economic loss where MR1 = MC (since AR < AC at E 1). At E 1 the industry is in disequilibrium. The economic losses force firms to leave the industry in the long run, thus shifting the supply curve in (b) to the left, to S 2. The price rises to P2, where equilibrium is established for the industry. The individual firm earns a normal profit and there is no incentive for firms to leave or enter the industry.

176

CHAPT E R 1 0 MA RKET STRUCTURE 1: OVERVI EW A ND PERFECT COM P E T I T I ON

FIGURE 10-9 Increasing the firm’s scale of production to realise economies of scale

The firm initially produces at scale 1 when the market price is P1. A quantity of Q 1 is produced and economic profit (indicated by the shaded area) is earned. In the long run, when all inputs are variable, the firm expands its plant size and produces at lower unit costs at scale 2. However, due to similar expansions at other existing firms and the entry of new firms, industry supply increases and the market price drops to P2. In the long run, equilibrium is achieved at a quantity Q 2 where P = SRMC 2 = SRAC 2 = LRAC. The firm earns only normal profit in the long run.

TDBMFPGUIFJSPQFSBUJPOT#PUIUIFFOUSBODFPGOFXGJSNT and the expansion of existing firms result in an increase in the supply of the product, which can be illustrated by a rightward shift of the supply curve. This increase in supply (not shown in the diagram) drives the price of the product down to P2 and in the end all remaining firms in the industry (such as the one in Figure 10-9) again just earn a normal profit (ie zero economic profit). In the long run, therefore, existing firms will continue to expand as long as there are economies of scale to be realised (ie as long as average costs can be reduced), and new firms will continue to enter the industry as long as positive economic profits are being earned. This process will continue until only normal profits are earned. In the long run, the firm is thus in equilibrium where P = SRMC = SRAC = LRAC, as at price P2 and quantity Q2 in Figure /PPUIFSQSJDFDBOSFQSFTFOUBOFRVJMJCSJVN"UBOZ higher price, economic profits will be earned and the existing firms will expand and/or new firms will enter. "UBOZMPXFSQSJDF FDPOPNJDMPTTFTXJMMCFNBEFBOEUIF existing firms will contract and/or exit the industry. Only where P = SRMC = SRAC = LRAC will economic profit be zero and will the industry be in equilibrium. Throughout the analysis in this chapter we have assumed that the demand for the product remains unchanged. If the demand should change (illustrated by a shift of the demand curve), the price of the product will change and this, in turn, will set a whole chain of actions and reactions in motion. "OBOBMZTJTPGUIFTFDIBOHFTGBMMTCFZPOEUIFTDPQFPGUIJT book, but you will encounter it in intermediate courses in microeconomics.

10.8 Perfect competition as a benchmark In Section 10.3 we mentioned that one of the reasons why perfect competition is studied is that it represents a standard or norm against which the functioning of all other types of market can be compared. Two of the important criteria in this regard are allocative efficiency and productive efficiency.

Allocative efficiency "OBMMPDBUJPOPGSFTPVSDFTJTSFHBSEFEBTefficient when it is impossible to reallocate the resources to make at least one person better off without making someone else worse off. On the other hand, an allocation of resources is inefficient if it possible to make at least one person better off without making someone else worse off. In such a case the welfare of society can be improved by reallocating the resources. This notion of allocative efficiency is called Pareto efficiency or Pareto optimality, after the Italian FDPOPNJTU 7JMGSFEP1BSFUP o

XIPGPSNVMBUFEJUJO"MMPDBUJWFFGmDJFODZJTBDIJFWFEXIFOthe price of each product is equal to its marginal cost in the long run. Marginal cost (MC) is the opportunity cost of producing an extra unit of output. Price (P), on the other hand, is the opportunity cost of consuming an extra unit of the product – it reflects the consumers’ sacrifice required to obtain the extra unit. Society’s welfare is maximised when the marginal cost of each product is equal to its price (ie when MC = P) and AC ≤ MC in the long run. If price is greater than marginal cost, society places a higher value on an additional unit of the product than the resources required to produce it, and society’s welfare can be improved by producing more of the product (and less of other products). Conversely, if price is lower than marginal cost, society places a lower value on an additional unit of output than the cost of producing it. Society’s welfare can then be improved by producing less of the product (and more of other products).

C HA P TER 10 M A R K E T S T RUCT URE 1: OV E RV IE W AND PERFECT COMPETI TI ON

177

"TXFIBWFTFFO QFSGFDUMZDPNQFUJUJWFGJSNTQSPEVDFXIFSFMR = MC, that is, where marginal cost (MC) is equal to price (P). Under perfect competition there is equilibrium when MR = P = MC and the first condition for allocative efficiency is thus met. Moreover, perfectly competitive firms will only produce in the long run if AR (= P = MR) ≥ AC. It therefore also follows that AC ) MC in the long run. The second condition for allocative efficiency is therefore also met. Note that for a perfectly competitive firm, profit maximisation and allocative efficiency are not at odds. The perfectly competitive firm seeks to maximise profits by producing the quantity of output at which MR = MC, and because for the firm P = MR, it automatically achieves allocative efficiency (P = MC) when it maximises profit (MR = MC). However, as we shall see in the next chapter, profit maximisation and allocative efficiency might be at odds in other market structures.

Productive efficiency Productive efficiency in an industry occurs when all the firms in the industry produce where their long-run average or unit costs (AC) are at a minimum"UBOZPUIFSMFWFMPGPVUQVUJUJTQPTTJCMFUPSFEVDFUIFBWFSBHF cost of production by producing more or less of the product. Productive efficiency is desirable for society since JUNFBOTUIBUmSNTBSFFDPOPNJTJOHPOTPDJFUZTTDBSDFSFTPVSDFTBOEUIFSFGPSFOPUXBTUJOHUIFN"TXFIBWF seen in the previous section, perfectly competitive firms are only in equilibrium in the long run where average cost is at a minimum. Perfectly competitive firms thus satisfy the condition for productive efficiency. However, as we shall see in the next chapter, firms in other market structures are not necessarily productively efficient.

10.9 Concluding remarks Perfect competition is intuitively attractive. It disciplines all the participants and satisfies the conditions for allocative and productive efficiency. In the impersonal world of perfect competition market forces call the tune and neither private firms nor public officials wield economic power. The market mechanism, acting like Adam Smith’s invisible hand, determines the allocation of resources among competing uses. Perfectly competitive markets clearly have remarkable and desirable properties and are undoubtedly efficient. But are such markets fair? Do they necessarily produce the greatest happiness for the greatest number of people? Unfortunately not. To participate in the market, one needs purchasing power – only money votes count – and people are not equally endowed with purchasing power. Some are very poor through no fault of their own and some are very rich through no virtue of their own. In a society in which the distribution of income and wealth is highly unequal, perfect competition will maintain and aggravate the inequalities. A perfectly competitive system might be very efficient but it only benefits those who are in a position to compete. Societies do not live on efficiency alone. Equity is also important and societies often decide to take steps to improve the equity or fairness of the distribution of income and wealth.

IMPORTANT CONCEPTS

Market structure Perfect competition Monopoly Monopolistic competition Oligopoly hom*ogeneous (identical) products) Heterogeneous products Entry and exit Collusion Price taker

178

Demand curve for the product of the firm Total revenue (TR) Marginal revenue (MR) Average revenue (AR) Shut-down rule Profit-maximising rule Total cost (TC) Average cost (AC) Average variable cost (AVC)

Marginal cost (MC) Total profit Normal profit Economic profit Break-even point Supply curve of the firm Industry (or market) supply Industry equilibrium Allocative efficiency Productive efficiency

CHAPT E R 1 0 MA RKET STRUCTURE 1: OVERVI EW A ND PERFECT COM P E T I T I ON

1 Market structure 2: monopoly and imperfect competition

Chapter overview 11.1 Monopoly 11.2 Monopolistic competition 11.3 Oligopoly 11.4 Comparison of monopoly and imperfect competition with perfect competition 11.5Policy with regard to monopoly and imperfect competition 11.6 Concluding remarks Important concepts

It is not enough to prove that a given industry is not competitive. The crucial question is: how far do conditions in the industry depart from competition? In many and perhaps most cases the answer is that the departures are not large. GEORGE STIGLER

Like many businessmen of genius he learned that free competition was wasteful, monopoly efficient. MARIO PUZO

I don’t meet competition, I crush it. CHARLES REVSON

Learning outcomes Once you have studied this chapter you should be able to 䡲 䡲 䡲 䡲 䡲 䡲

explain the equilibrium position of a monopolist analyse the equilibrium position of a monopolistically competitive firm discuss the key features of oligopoly compare the outcome under perfect competition with the outcome under other market structures discuss the advantages and disadvantages of bigness explain the purpose of competition policy

In Chapter 10 we examined the behaviour of a firm in a perfectly competitive market. Perfect competition is a theoretical construct which serves as a standard or norm against which we can compare other types of market. In the real world there are many different types of market. Nearly every market or industry is unique, and no simple classification system can accurately reflect this enormous variety. In this chapter we examine monopoly, monopolistic competition and oligopoly. The last two are usually collectively referred to as imperfect competition. This is followed by comparisons between perfect competition and the other three market structures. The chapter is concluded with a discussion of government policy with regard to monopoly and imperfect competition.

179

The theory of the behaviour of firms (ie the theory of the supply side of the goods market) is called the theory of the firm. The neoclassical version of this theory is based on the assumption that all firms seek to maximise their profits. In this chapter we examine the behaviour of profit- maximising firms under conditions of monopoly and imperfect competition. Under monopoly there is only one supplier and entry to the industry is completely blocked (ie there is no competition), while imperfect competition refers to a situation in which at least one of the conditions for perfect competition listed in Table 10-1 is not satisfied. The two broad categories of imperfect competition are oligopoly and monopolistic competition. In Chapter 10 we saw that the demand curve facing the perfectly competitive firm is horizontal (at the level of the market price). Under monopoly and imperfect competition, however, the demand curve for the product of an individual firm slopes downward, like a normal market demand curve. This is one of the distinguishing features of monopoly and imperfect competition. Another important feature of imperfect competition (but not of monopoly) is that an individual firm can be affected by the actions of competitors.

11.1 Monopoly The word monopoly is derived from the Greek words monos, meaning “single” and polein, meaning “sell”. In its pure form, monopoly is a market structure in which there is only one seller of a good or service that has no close substitutes. A further requirement is that entry to the market should be completely blocked (see Table 101). The single seller or firm is called a monopolist or monopolistic firm. Monopoly is at the opposite extreme to perfect competition in the spectrum of market structures. See Figure 101. Whereas a perfectly competitive industry consists of a large number of small firms, the monopolistic industry consists of a single firm (ie the monopolistic firm is also the industry). This means that the demand for the product of the industry (or the market demand) is also the demand for the product of the single firm (or monopolist). The monopolistic firm faces a downward-sloping demand curve and can fix the price at which it sells its product. In other words, it can choose the point along the demand curve at which it wants to operate. However, once it decides on a price, the quantity sold depends on the market demand. A monopolist cannot set its sales and its price independently of each other. In other words, a monopolistic firm is always constrained by the demand for its product. This demand, however, might be highly price inelastic, thereby creating scope for the monopolist to exploit consumers by reducing the quantity supplied. Contrary to what many people believe, pure monopoly is a relatively rare occurrence. Most “monopolies” are actually near-monopolies. Although there may be only one seller of a particular product in a market, that product may have substitutes. For example, there is only one railway system in South Africa, but that system has to compete with other modes of transport (air, road, sea). Similarly, there is only one postal system in the country, but the Post Office has to compete with facsimiles, electronic mail, private courier services and even fixed-line and cellular phone services. SABMiller is usually regarded as a good example of a private monopoly, and it certainly dominates the beer market in South Africa. But it is not the only supplier of beer and has to compete with imported brands in certain segments of the market. Moreover, beer also has some potential substitutes (eg wine, spirits, soft drinks and even bottled water). The South African beer market definitely does not meet the requirements for pure monopoly and should therefore be classified as a near-monopoly rather than as a monopoly. It should be borne in mind, however, that whether or not an industry or market can be classified as a monopoly depends, inter alia, on how narrowly the industry or market is defined. There are global, national, regional and local markets. A monopoly does not require that there be only one supplier of the good or service in the whole country. A monopoly may pertain to a specific market area, such as a suburb, town, city or province, with transport costs often being an important determinant of the geographical size of the market. Moreover, services and retail outlets usually have narrower markets, geographically speaking, than manufactured goods. As a result, a shop or trading store in an isolated rural area, the local hotel, the local bottle store, the local hairdresser and so on may all be virtual monopolists. On the other hand, the advent of the Internet and online trading has widened many markets. For example, the fact that one can purchase books electronically via Kalahari.net and Amazon. com has reduced the market power of local bookstores. Even if there is only one firm in the market, this fact alone is not sufficient to label it a pure monopolist. A single firm can only be classified as a monopolist if entry into the market is blocked. Different barriers to entry are discussed in Box 11-1. Why study the theory of pure monopoly if there are few, if any, actual examples of pure monopolies? The answer is basically the same as the one we gave in respect of perfect competition. The theory provides important insights into the behaviour of firms in markets which approximate conditions of monopoly. It also serves as a benchmark at the opposite extreme to perfect competition in the spectrum of market structures. As we shall see, many markets exhibit elements of competition and monopoly and we need theories of competition and monopoly to understand how these intermediate markets operate. 180

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

BOX 11-1 BARRIERS TO ENTRY There are a number of potential barriers to entry that may give rise to monopoly or near-monopoly (or may protect existing monopolists from competition). In some cases one firm can supply the entire market at a lower price than two or more firms can. When there is room for only one firm in an industry to produce a product efficiently (ie when one firm can supply the entire market at a lower price than two or more firms can), economists speak of a natural monopoly. This occurs when the average cost of production is still declining at levels of output that are greater than those likely to be demanded. The reason for the falling average cost is usually that production requires a large initial capital outlay (ie large fixed cost), as in the case of the supply of electricity, water and telephone services in a particular region. Recall from Chapter 9 that reductions in the average cost of production as the scale of operation increases are called economies of scale. We can therefore say that a natural monopoly occurs when the economies of scale are so large that there is room for only one firm in the industry. Examples include the railway system and the mass generation of electricity. Natural monopolies are usually owned or regulated by government. Limited size of the market is another natural barrier to entry. This is particularly relevant in South Africa, since the economy is relatively small and isolated geographically from international markets. Many South (and southern) African markets can support only one or a few large firms, especially in industries that require large capital expenditure, while the distance from the international markets sometimes excludes export possibilities (because of the high transport costs). A third possible reason for monopoly is the exclusive ownership of raw materials. The example most frequently cited in this regard is De Beers Consolidated Mines, which owns or controls a number of diamond mines and, through its Central Selling Organisation (CSO), for many years largely controlled the supply of diamonds on the world market. A fourth barrier to entry is patents. A patent is the legal right granted to the inventor of a product, technique or process that allows him or her a temporary exclusive use of the product, technique or process patented (usually for 20 years). Patents play a very important role in the pharmaceutical industry. For example, SmithKline’s patent on Tagamet, a product for treating ulcers, yielded large monopoly profits for that company. Other recent examples include Zantac, another product for treating ulcers (manufactured by Glaxo), Prozac, an antidepressant (manufactured by Eli Lilly) and Viagra, a male sexual stimulant (manufactured by Pfizer). A classic example is the exclusive right to photocopying that Rank-Xerox originally had in the United Kingdom. A related type of barrier is licensing. Licences may be used to control entry into certain industries, occupations or professions. Governments may grant licences to one or a limited number of firms to supply a particular good or service. In South Africa, for example, Vodacom and MTN were the only companies that were licensed to provide a cellular phone service when this was introduced in South Africa in 1994. Subsequently Cell C was awarded the third licence, after a protracted struggle against other bidders. Other examples include liquor licences and broadcasting licences. In certain professions (eg law, accounting, medicine, dentistry, veterinary science, architecture and engineering), licensing requirements also have the effect of limiting competition. Sole rights to a particular product or service can also be purchased by a private firm. In June 1995, for example, the Australian tycoon, Rupert Murdoch, created a furore by purchasing the sole rights to telecast provincial and international rugby union matches in Australia, New Zealand and South Africa from 1996 to 2005, for an amount of US$550 million. In 2004 Murdoch’s company, News Ltd, again bought the rights to broadcast the games from 2006 to 2010 for a further US $323 million. Another barrier to entry is import restrictions. Even if there is only one producer of a particular good or service in a country, that producer is often subject to competition from foreign firms. To protect themselves from import competition, the domestic monopolies lobby (ie try to persuade) government to impose import restrictions (eg in the form of import quotas or tariffs). It is not surprising that the import tariff has been described as “the mother of monopoly”.

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

181

Established firms can also create their own barriers to entry by applying strategies aimed at discouraging new firms from entering the market or forcing them out once they have entered. This can take many forms, including predatory pricing and maintaining excess capacity. Predatory pricing refers to the situation where existing firms lower their prices to below the new entrant’s costs of production, in order to drive out the new entrant and discourage future entry. If experience shows that prices fall drastically in a particular market every time a new firm enters the market, potential new firms will be reluctant to enter. A well-known example occurred in the 1970s when a British businessman, Freddy Laker, started operating a passenger air service between London and New York at much lower prices than the established airlines. The existing companies responded by cutting their airfares on this route to the point where Laker Airways was driven into bankruptcy. Once Laker’s company had been forced out, prices were raised to their former levels. Another possible strategy is for the existing firm(s) to build up excess capacity that can be used if new firms enter the market. If potential new firms realise that the existing firm(s) can increase production with little effort and little additional cost, they will probably refrain from entering the market. These are some barriers to entry which may deter or prevent new firms from entering the industry and give rise to (or perpetuate) monopoly or oligopoly.

The equilibrium (or profit-maximising) position of a monopolist We assume that the monopolistic firm aims to maximise profit. In principle the profit-maximising decision of a monopolist is exactly the same as that of any other firm. The monopolistic firm must consider its revenue and cost structures and follows the two basic rules explained in Chapter 10. Like any other firm, a monopolist should produce where marginal revenue (MR) is equal to marginal cost (MC) (the profit-maximising rule), provided that average revenue (AR) is greater than minimum average variable cost (AVC) in the short run or average total cost AC in the long run (the shut-down rule). For the moment we also assume that a monopolist is subject to the same basic technology and cost constraints as any other firm and we assume that its cost structure is no different to that of any other firm. Its revenue structure, however, is different to that of a perfectly competitive firm and we have to examine this more closely before we can determine the profit- maximising position of a monopolist. 䡲 TOTAL, AVERAGE AND MARGINAL REVENUE UNDER MONOPOLY Since a monopolist is the only supplier of the specific product, the demand curve for the product of a monopolistic firm is the market demand curve for the product of the industry. For example, if TP Cement is the sole supplier of cement in a particular market, the market demand for cement in that area is also the demand for TP Cement’s product. Because the market demand curve slopes downward, the monopolist can only sell an additional quantity of output if it lowers the price of its product. But the lower price will usually apply to all units of output, which means that the marginal revenue from the sale of an extra unit of output is less than the price at which all units of the product are sold. The relationship between a monopolist’s average revenue (ie the price of the product) and its marginal revenue can be explained with the aid of a simple numerical example. This relationship applies to imperfect competitors as well. In Table 11-1 we show prices and quantities for a hypothetical monopoly. The first column shows the different quantities demanded at the different prices shown in the second column.

182

TABLE 11-1 Average, total and marginal revenue when the demand curve for the product of the firm slopes downward: a numerical example Quantity

Average revenue (R)

Total revenue (R)

Marginal revenue (R)

Q

AR (or price P)

TR (= PQ)

MR

1

8

8

2

7

14

3

6

18

4

5

20

5

4

20

6

3

18

8 6 4 2 0 –2

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

FIGURE 11-1 Marginal, average and total revenue under monopoly (and imperfect competition) (a)

(b) TR 20

8

TR 6 //

//

4 AR 2

0 –2

1

4 2 3 Quantity (units)

5

6 MR

Total revenue (R)

Price, revenue per unit (R)

P, MR, AR

10

Q

1

2

4 3 Quantity (units)

5

6

Q

Under monopoly, a firm faces a downward-sloping demand curve, which is also its average revenue curve AR, as shown in (a). The marginal revenue curve MR is also downward sloping. If AR is a straight line, MR lies halfway between the AR curve and the price axis. The corresponding total revenue curve TR is shown in (b). When MR is positive, TR increases; when MR is zero, TR remains unchanged; and when MR is negative, TR falls. These relationships apply to imperfectly competitive firms as well.

For example, when the price of the product is R6 per unit, 3 units will be demanded and sold. Total revenue (TR) is equal to price (P) times quantity sold (Q) (ie TR = P u Q, or PQ). Average revenue is equal to the price of the product (or to total revenue TR (= PQ) divided by the quantity Q). The firm’s marginal revenue (MR) is the change in total revenue when one extra unit of output is sold. This is shown in the last column. Except for the first unit sold, the firm’s marginal revenue (MR) is always lower than the price of the product. The firm’s total, average and marginal revenue are illustrated in Figure 11-1. In Figure 11-1(a) we show average revenue (AR) and marginal revenue (MR). Because MR is the change in total revenue resulting from the sale of an extra unit of output, it applies to the movement from one unit to the next, rather than to a specific unit. The value of MR is therefore plotted between the two units concerned, rather than against one of them. Figure 11-1(a) clearly shows that MR is lower than AR at all levels of output. This is an important result which always holds when AR is downward sloping, as in Figure 11-1(a). If AR is a straight line, MR lies exactly halfway between AR and the price axis (ie the vertical axis). The firm’s total revenue (TR) is shown in Figure 11-1(b). TR rises, reaches a maximum and then falls. As you can see if you compare (a) and (b) of Figure 11-1, as long as MR is positive, TR rises; where MR is zero, TR reaches a maximum; and when MR becomes negative, TR falls. This relationship between MR and TR is illustrated clearly in Figure 11-1. See also Box 11-2.1 The most important results illustrated in Figure 11-1 are that tùMR is always lower than AR when the firm’s demand curve slopes downward tùJGAR is a straight line, MR lies halfway between the price axis and the AR curve These results apply to all cases where the firm’s demand curve is downward sloping, including monopolistic competition and oligopoly, which are discussed in Sections 11.2 and 11.3.

䡲 THE SHORT-RUN EQUILIBRIUM OF THE MONOPOLISTIC FIRM The short-run equilibrium position of a monopolistic firm is illustrated in Figure 11-2. The firm faces a downwardsloping demand curve (D) which is also its average revenue curve (AR). The firm’s marginal revenue (MR) is lower than its average revenue, and the MR curve lies halfway between the AR curve and the price axis. The monopolist’s marginal cost MC and average cost AC curves have the same shape as those of any other firm.

1. Note that these relationships apply only if all output is sold at the same price. The exception is when the monopolist sells its product at different prices to different consumers (or groups of consumers). This practice, which is called price discrimination, is discussed later. CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

183

Price

To maximise profit (or minimise loss), the monopolist has to FIGURE 11-2 The short-run equilibrium of the firm under monopoly produce where MR = MC. In Figure 11-2 this is indicated by E, which points to an output of Q1. At lower levels of output P MC than Q1, the firm’s marginal revenue MR is greater than its marginal cost MC. The firm will therefore be able to add to its profit by expanding production. At Q1 the additional revenue generated by the last unit of output is equal to the additional AC cost of producing that unit. At that quantity the firm’s profit M1 P1 is maximised. If it increases its production beyond Q1, the cost of each additional unit of output (MC) is greater than Profit K1 the additional revenue (MR) earned by selling it. Total profit C1 will therefore decline if the firm continues producing beyond E Q1. Like any other firm, a monopolist maximises profit by producing that quantity where MR = MC. At what price should that output be sold? The answer is MR D = AR Q Q quite simple. The monopolist sells its output at the price which 0 Q1 consumers are willing to pay for that particular quantity, as Quantity indicated by the demand curve. In Figure 11-2 point M1 is the relevant point on the demand curve. It shows that consumers are The figure shows the average revenue AR, marginal willing to pay a price of P1 for a quantity of Q1. The equilibrium revenue MR, average cost AC and marginal cost MC price is thus P1 and the equilibrium quantity Q1. of a monopolist. The monopolist’s profit is maximised Does the monopolist make a profit in equilibrium? To by producing a quantity Q1 at a price P1. The economic determine whether a firm makes an economic profit or a loss, profit per unit of output is the difference between M1 and K1 (or between P1 and C1). The firm’s total we have to compare total revenue with total cost, or average economic profit is the shaded area C1P1M1K1. revenue with average cost. Contrary to what many people believe, a monopolist can also make a loss. The hypothetical monopolist in Figure 11-2 earns an economic profit, but it would also be possible to illustrate the position of a monopolistic firm that makes an economic loss, as well as one that earns normal profit only (ie when economic profit/loss is zero). In Figure 11-2 the monopolist’s average profit per unit of output is shown by the difference between average revenue (AR) and average cost (AC) at a quantity Q1. In the figure these two points are labelled M1 and K1 respectively. The firm’s total economic profit is indicated by the shaded rectangle C1P1M1K1. 䡲 THE LONG-RUN EQUILIBRIUM OF THE MONOPOLISTIC FIRM Under perfect competition any short-run economic profit is competed away in the long run by the entry of new firms or the expansion of existing firms. Under monopoly, however, entry into the industry is blocked (by definition) and short-run economic profits therefore cannot be reduced by new competing firms entering the industry. The monopolistic firm can thus continue to earn economic profits (also called monopoly profits) in the long run, as long as the demand for its product remains intact. If the monopolistic firm should expand its plant size (to achieve economies of scale), its average cost curve will become flatter but for the rest the long-run position of a monopolist will be essentially the same as that illustrated in Figure 11-2, the only difference being that the firm will produce where MR = long-run MC. 䡲 ABSENCE OF A SUPPLY CURVE UNDER MONOPOLY A monopolist does not have a supply curve showing the quantities that will be supplied at different prices of the product. Under perfect competition, the short-run supply curve of each individual firm is the rising (or upwardsloping) part of the marginal cost (MC) curve above the minimum average variable cost (AVC), and the market supply curve is obtained by adding all the individual supply curves horizontally. The monopolist, however, chooses the combination of price and output at which profit is maximised (or loss minimised), given the demand (or revenue) conditions and the cost conditions. Subject to the demand constraint, the monopolist is a price maker and does not move along a supply curve as the price of the product changes.

Price discrimination Until now we have assumed that the monopolistic firm sells its product at a single price, irrespective of where or to whom it is sold. Sometimes, however, firms with market power find it profitable to sell the same product to different consumers or groups of consumers at different prices. This practice is called price discrimination. Price discrimination occurs only when price differences are based on different buyers’ valuations of the same product. If price differences are based on cost differences they are not discriminatory. 184

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

BOX 11-2 MARGINAL REVENUE AND PRICE ELASTICITY OF DEMAND Figure 11-1 probably looks familiar. It should, since it is essentially the same as Figure 6-2. In Figure 6-2 we showed how total revenue (TR) depends on the price elasticity of demand for the product. As quantity increases, total revenue also increases when the price elasticity of demand (ep) is greater than one. TR reaches a maximum where ep = 1, and falls (as quantity increases) when ep is lower than one. You should turn back to Figure 6-2 now to refresh your memory on this point. From Figures 11-1 and 6-2 it follows that tùMR is positive when ep is greater than one (ie when demand is elastic) tùMR is zero when ep is equal to one (ie when demand is unitarily elastic) tùMR is negative when ep is less than one (ie when demand is inelastic) These results are illustrated in the following figure. P

ep > 1 //

Price

Demand curve (AR ) ep = 1

ep < 1 //

///

Q

///

Quantity

MR

It is said that in Ancient Egypt, during the reign of Rameses the Great, there was a toll road on an important route across a range of hills. Other routes were available, but they were much more difficult than this one. The person sent to administer the toll road found that he had some discretion over pricing. When he asked for guidelines on what he should charge, the reply was: “Charge what the traffic will bear.” This is essentially what price discrimination is all about. In Chapter 4 we explained that consumers as a group benefit when a good or service is sold at a fixed price. If the demand curve slopes downward, a single price implies that all the quantities except the last one are sold at a lower price than consumers are willing and able to pay. This benefit is called the consumer surplus. The purpose of price discrimination is to capture all or part of the consumer surplus, or to increase sales, thereby

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

185

increasing profits. However, not all firms are in a position to practise price discrimination. Two basic conditions have to be met: t 5IFmSNNVTUCFBQSJDFNBLFSPSQSJDFTFUUFS6OEFSQFSGFDUDPNQFUJUJPO XIFSFBMMmSNTBSFQSJDFUBLFST QSJDF discrimination is impossible. t $POTVNFSTPSNBSLFUTNVTUCFJOEFQFOEFOU$POTVNFSTPCUBJOJOHUIFQSPEVDUBUBMPXQSJDFPSJOUIFMPXQSJDFE market must not be able to resell the product at higher prices or in the high-priced market. The discriminating firm must thus be able to divide the market and keep the different parts separate. This is usually much easier for services than for goods. For example, one cannot resell the ser vices of a hairdresser or a medical practitioner. Three main varieties of price discrimination can be distinguished: t First-degree price discrimination (sometimes also called discrimination among units) occurs when each consumer is charged the maximum price he or she is prepared to pay for each unit of the product. This is also what stall holders in a bazaar or fleamarket attempt to do when bargaining with their customers. In a bazaar, however, negotiation between sellers and buyers occurs at prices between that which the consumer is prepared to pay and that which the supplier is prepared to accept. The outcome will depend on the bargaining or negotiation skills of the two parties. In some instances, for example, the price at which the trade occurs might be the minimum price which the supplier is prepared to accept, rather than the maximum price the consumer is willing to pay. The price-discriminating firm, however, will only practise price discrimination if it can obtain a higher price than the equilibrium market price. If the firm succeeds in capturing the total consumer surplus by charging each consumer the full amount she is willing and able to pay, the consumer surplus is eliminated and the demand curve becomes the firm’s marginal revenue curve. This is called perfect price discrimination. t Second-degree price discrimination (sometimes also called discrimination among quantities) occurs when the firm charges its customers different prices according to how much they purchase. It may, for example, charge a high price for the first so many units, a lower price for the next so many units and a lower price again for the next. With different prices being charged for different quantities or blocks of the same product consumers may be encouraged to consume more of the product. For example, if you purchase a six-pack of Castle Lager you will pay less per can than if you buy fewer cans, and if you buy a case of 24 cans the unit price will be even lower. Likewise, if you subscribe to a magazine or newspaper for a certain period, you will pay less per copy than if you buy each one separately. t Third-degree price discrimination (sometimes also called discrimination among buyers) occurs when consumers are grouped into two or more independent markets and a separate price is charged in each market. In this case the price elasticity of demand must differ between the different markets. The firm will charge the higher price in the market where demand is less price elastic, and thus less sensitive to an increase in price. By raising the price where demand is inelastic and reducing it where demand is elastic, revenue can be increased in both markets (or market segments). Third-degree price discrimination is practised fairly widely. Eskom, for example, differentiates between domestic and industrial consumers, selling electricity to industrial users on more favourable terms than to domestic users. Electricity can also be sold at different prices during peak periods and off-peak periods. Since electricity cannot be stored for later use, such discrimination is possible. SAA also practises price discrimination by charging different fares to different market segments and at different times of the day. Business travellers, whose fares are usually paid by their employers, tend to travel during peak times and are generally less sensitive to price than tourists, students or other casual travellers who have to pay out of their own pockets. More formally, business travellers’ demand for air travel is relatively price inelastic and an increase in their fares will tend to result in higher revenue. Other travellers, however, tend to have a high price elasticity of demand and a reduction in the price of air travel (eg during off-peak periods or by booking well in advance or by staying over on weekends) will tend to attract additional passengers and raise revenue in this part of the market for air travel. Another example is Telkom, which also provides a service that cannot be resold by its customers. Telkom charges higher tariffs during peak hours and lower tariffs during off-peak hours or Callmore time. Once again, the rationale is that calls during normal business hours will be made in any case (ie the demand is price inelastic) while lower off-peak tariffs will result in an increase in calls during this period (ie the demand is price elastic). There are many other examples of price discrimination, particularly as far as services are concerned. Hairdressers, for example, offer special low rates for pensioners at slack times, as do many golf clubs. Bus and train services charge different rates per trip for daily, weekly and monthly tickets. Many cinemas charge lower prices for children than for adults during the daytime, or to everyone on relatively “quiet” days (eg Tuesdays). Children or students are 186

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

also often charged lower prices on public transport or at sporting events. Doctors in private practice tend to charge their non-medical aid patients according to what they can afford. Quite clearly, therefore, price discrimination is not practised only by monopolists (narrowly defined).

Natural monopoly As mentioned in Box 11-1, natural monopoly is a situation that arises where it is most cost efficient for a single firm to produce all the output in an industry or market. This is illustrated in Figure 11-3. In the figure we see that average cost AC is still declining at the point where the quantity demanded reaches a maximum. Even if the price of the good or service is zero, market demand will still not be sufficient for the firm to achieve minimum AC (or maximum economies of scale). Thus, even where one firm supplies all the industry output, the firm will still not be operating at the minimum efficient scale. Clearly, if there were more than one firm sharing the output, the average cost of production of each firm would be higher. The situation illustrated in Figure 11-3 typically arises in the case of public utilities such as the supply of electricity and water. Natural monopolies create a dilemma for government policy and regulation. Some form of government intervention is necessary, since a private firm would be able to produce at inefficient levels and earn large economic profits. Broadly speaking, there are two options. Either government can produce the good itself or production could be left to a private firm, which is then regulated by government in a variety of possible ways. Government cannot force competition by legislating that there be a minimum number of firms in the industry, since the economy’s resources would be wasted if there were more than one producer. Where production is left to a private firm, regulation can take the form of price control. But where should the price be set? In Chapter 10 we explained that there are two notions of efficiency. Allocative efficiency requires that the price P be such that P = MC, while productive efficiency is achieved where AC is at a minimum. In this case, the latter point cannot be reached and the logical conclusion is therefore that price should be equated with marginal cost to ensure allocative efficiency. This is called the marginal pricing rule. However, imposing the marginal pricing rule will result in economic losses – see Figure 11-4. If price is equated to marginal cost, average revenue will be lower than average cost. What now? If the product is an essential one, like water or electricity, a solution needs to be found. At least four alternative strategies can be followed: t (PWFSONFOUDBOTVQQMZUIFHPPEPSTFSWJDFJUTFMGBOEVTFUBYSFWFOVFUPDPNQFOTBUFGPSUIFMPTTFT5IJTJTXIBU has happened, for example, in the case of postal services in South Africa. A major problem with this strategy is that non-users have to help pay for the good or service. t (PWFSONFOUDBOMFBWFQSPEVDUJPOUPBQSJWBUFmSNBOETVCTJEJTFJUTMPTTFT t An alternative pricing strategy can be followed, for example, average cost pricing (ie setting P = AC). The firm (which could be government-owned or a private company) would then earn a normal profit and no subsidisation would be necessary. Output (Q2 in Figure 11-4) will be lower than in the case of marginal cost pricing (Q3) but FIGURE 11-3 Natural monopoly

FIGURE 11-4 Pricing options under natural monopoly

P

P

MC

AC

Price per unit

Price per unit

D = AR

Unregulated monopolist

P1

MC

P = AC

P2 P3

P = MC

D = AR Q 0

Quantity per period

Q Q1

Q2 Q3 MR

MR

A natural monopoly exists if average cost AC is still declining when the quantity demanded reaches a maximum.

AC

Quantity per period

If the monopoly is unregulated, equilibrium will be at price P1 and quantity Q1. Marginal cost pricing will yield a price P3 and quantity Q3, but the monopolist will make a loss. Average cost pricing will yield a price P2 and quantity Q2.

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

187

higher than that of an unregulated monopolist (Q1), which will produce where MR = MC and at a price (P1) corresponding to the demand (AR) curve. Theoretically, average cost pricing may seem a good option, but if firms are allowed to earn only normal profits they have no incentive to minimise costs. Higher costs (eg in the form of higher wages and salaries) will simply result in higher prices. This disadvantage is associated with the first two strategies as well. t 5IFGPVSUIPQUJPOJTQSJDFEJTDSJNJOBUJPO"TFYQMBJOFEFBSMJFS QVCMJDVUJMJUJFTMJLF&TLPNUFOEUPDIBSHFEJGGFSFOU rates for different market segments. Price discrimination enables the supplier to capture some of the consumer surplus in certain market segments which can then be used to subsidise consumers in other market segments. There are also other possible strategies, including the regulation of output, which we shall not discuss here. Regulation of natural monopolies is a complicated issue but our brief discussion should help you to understand some of the basic issues relating to privatisation and regulation of natural monopolies and to follow the debates on tariffs charged by public utilities, such as Eskom, Rand Water and the Post Office, and on the role of the various regulating agencies to which these utilities have to report.

11.2 Monopolistic competition Between the extremes of pure monopoly and perfect competition there is a range of actual market structures. Some industries (like the brick manufacturing industry) consist of a few very large firms and a large number of small ones. Other industries (like motor manufacturing) consist of a few large firms only. In some industries (like the clothing industry) there are many firms producing a variety of quite similar products. In other industries (like the cement industry) a few large firms produce virtually identical products. One type of market in the spectrum between the extremes of perfect competition and monopoly is monopolistic competition. As the name indicates, monopolistic competition combines certain features of monopoly and perfect competition. The theories of perfect competition and monopoly were explained in detail by the famous British neoclassical economist, Alfred Marshall, in his Principles of economics, which was first published in 1890. For the next forty years or so most economists analysed the behaviour of the firm and the industry in terms of these two extreme market forms. In the early 1930s, however, two economists, working independently, developed similar theories of the firm which combined certain features of competition and monopoly. They were a British economist, Joan Robinson, and an American economist, Edward Chamberlin. Robinson and Chamberlin were concerned about the complete separation of the two existing models of firm and industry behaviour (perfect competition and monopoly), neither of which had many real-world applications. They pointed out that most goods and services are heterogeneous rather than hom*ogeneous, and that many sellers are actually monopolists as far as their own goods and services are concerned. These “monopolists”, however, compete against each other in markets for roughly similar goods. Many firms can thus be regarded as “competing monopolists”, hence the name monopolistic competition. Under monopolistic competition each firm is small enough (relative to the total market) and the total number of firms large enough so that each firm can ignore the consequences of its actions on the other firms in the market. In a monopolistically competitive market a large number of firms produce similar but slightly different products. Whereas both a monopolist and a perfectly competitive firm produce a hom*ogeneous (standardised, identical) product, monopolistically competitive firms produce heterogeneous (differentiated) products. The act of making a product that is slightly different to the product of a competing firm is called product differentiation.

Product differentiation The theory of perfect competition is based on the assumption that all the firms in the particular market produce absolutely identical (or hom*ogeneous) products. When all the products are identical, the only form of competition in which firms can engage is price competition. A pure monopoly can also exist only if the product is unique. If there are close substitutes for the product of a firm, that firm cannot be a monopolist, since it then has to compete against the firms producing close substitutes for its product. Most products, however, are not regarded as absolutely identical by all consumers. When there are different varieties of a product, the product is called a differentiated (or heterogeneous) product. In some cases different varieties of a product are technically different. The contents of two different painkillers may differ. However, the decision as to whether a product is hom*ogeneous or heterogeneous ultimately rests with the consumers. For example, two different brands of painkillers may have identical contents, but certain consumers may prefer the one to the other. Like beauty, product differentiation is in the eye of the beholder. In some cases the contents of two different products may actually come from the same source. For example, the large supermarket chains (Pick n Pay, Shoprite Checkers, Spar) all have their own house-brands (or no-name brands) for washing powder, cooking oil, tea, coffee, canned foods, fruit juices, margarine, dog food

188

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

and so on. In many instances these goods are exactly the same as well-known branded goods carrying the labels of their manufacturers. In some cases (eg canned fruit or vegetables) the no-name brand and the branded good may even contain identical products from the same farm and factory. The consumers decide whether or not the no-name goods are different to the other brands. Some consumers regard the products as identical and purchase the cheapest one. Others, however, prefer the well-known brands and are therefore willing to pay a higher price to obtain them. Box 11-3 contains lists of the five most popular brands of selected goods and services in South Africa. Each brand has a large number of loyal customers who prefer that particular brand to any other, and who are willing to pay a premium for it, even though cheaper substitutes may be available. Petrol is another example of a good which can be regarded as hom*ogeneous or heterogeneous, depending on consumers’ tastes or preferences. In South Africa, the price of petrol is fixed by government and there is thus no price competition. Some motorists believe that petrol is a hom*ogeneous good and are therefore willing to fill up at any convenient service station. Others, however, prefer a certain brand (eg Sasol, Caltex, Shell), and always try to purchase that particular brand. The example of petrol also illustrates certain elements of non-price competition. For the motorist who believes that all brands are identical, a convenient location is probably the most important determinant of his or her choice of filling station. Petrol companies therefore compete to obtain the best possible sites. But petrol companies also try to differentiate their product and to create consumer loyalty. They therefore spend large amounts on researching, developing and advertising additives that can enhance the performance of petrol-driven engines. Each company wants to create the impression that its product is technically superior to the similar products of other companies. They therefore spend massive amounts on advertising and other marketing strategies. Even in cases where the price of the product is fixed, competition can be fierce.

BOX 11-3 SOME OF THE MOST POPULAR BRANDS IN SOUTH AFRICA, 2013 Rank 1 2 3 4 5 Rank 1 2 3 4 5 Rank 1 2 3 4 5

Laundry care

Sports clothing

Cars

Petrol

Sunlight Stasoft Omo Surf Skip

Nike Adidas Puma Roxy Reebok

BMW Mercedes Benz Toyota Volkswagen Audi

Engen BP Shell Caltex Sasol

Convenience and grocery stores

Beer

Essential foods

Fast-food outlets

Pick n Pay Shoprite Spar Woolworths Checkers

Heineken Castle Lite Hansa Windhoek Carling Black Label

Tastic Albany White Star Spekko Ace

KFC Nando’s Macdonald’s Debonairs Steers

Tinned foods

Soft drinks

Large kitchen appliances

Banks

Koo Lucky Star All Gold Bull Brand John West

Coca-Cola Fanta Sprite Appletiser Stoney

Defy LG Samsung Kelvinator KIC

Standard Absa FNB Nedbank Capitec

Source:ùSunday Times Top Brands Survey 2013

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

189

Deliberate product differentiation is a common phenomenon in the modern economy. Each firm wants to differentiate its product from similar products supplied by other firms. The greater the real or perceived differentiation a firm can establish, the less price elastic the demand for its product becomes. The techniques of product differentiation, such as advertising, packaging, and the provision of free gifts with purchases, are all elements of non-price competition. In the case of differentiated products, non-price competition is often much more important than price competition.

Salient features of monopolistic competition The conditions for monopolistic competition can be summarised as follows (see also Table 10-1): t &BDImSNQSPEVDFTBEJTUJODUJWF EJGGFSFOUJBUFEQSPEVDU t &BDImSNUIFSFGPSFGBDFTBEPXOXBSETMPQJOHEFNBOEDVSWFGPSJUTQBSUJDVMBSQSPEVDU t 5IFSFBSFBMBSHFOVNCFSPGmSNTJOUIFJOEVTUSZ t 5IFSFBSFOPCBSSJFSTUPFOUSZPSFYJU Many markets in the economy can be classified as monopolistically competitive. Good examples are the markets for different types of clothing. Men’s and women’s clothing manufacturing industries in South Africa are characterised by large numbers of firms and low levels of economic concentration. Other examples include printing, furniture manufacturing, restaurants in a city and service stations. Each monopolistically competitive firm has a certain degree of monopoly power, as it is the only producer of UIFQBSUJDVMBSCSBOEPSWBSJFUZPGUIFQSPEVDU6OEFSNPOPQPMJTUJDDPNQFUJUJPO FBDImSNJTUIVTJOFGGFDUBNJOJ monopoly. But, in contrast to pure monopoly, monopolistically competitive firms compete with each other and new firms are free to enter the market for the differentiated product (eg shoes or shirts). The essential difference between monopolistic competition and monopoly lies in the barriers to entry. Whereas entry is not restricted under monopol-istic competition, it is completely blocked in the case of monopoly. On the other hand, the essential difference between monopolistic competition and perfect competition is found in the nature of the product. Whereas monopolistic competitors produce differentiated (heterogeneous) products, perfectly competitive firms produce identical (hom*ogeneous) products. Under monopolistic competition, each firm has its own identity. Each firm produces its own variety of a differentiated product and therefore faces a specific downward-sloping demand curve for its product. For example, the manufacturer of Pierre Cardin shirts faces a demand for Pierre Cardin shirts, rather than for shirts in general. If the price of Pierre Cardin shirts increases, consumers will, ceteris paribus, tend to switch to other brand names (eg Pringle, Polo, Van Heusen), but the quantity of Pierre Cardin shirts demanded from the manufacturer will not fall to zero, as it would under perfect competition. Likewise, the manufacturers of Panado face a demand curve for Panado, rather than for painkillers in general, while McDonald’s faces a demand curve for McDonald’s hamburgers, rather than for hamburgers in general.

The equilibrium of the firm under monopolistic competition As we move away from the extremes of perfect competition and monopoly to the market structures which occur most frequently in the economy, it becomes increasingly difficult to formulate general theories of the behaviour of firms. It is impossible, for example, to construct a general theory or model of a monopolistically competitive industr y. Although there is a market for, say, women’s clothing (a differentiated product supplied by a large number of firms), there is no single product or single market price in that market. Instead, there is a range of similar products and a range of prices. Nevertheless, we can still analyse the equilibrium of a representative firm under monopolistic competition, in both the short run and the long run. Analytically, the short-run equilibrium of a mono-polistic competitor is the same as that of a monopolist, except that the demand curve for the product of the monopolistic competitor is significantly more price elastic than that of the monopolist. The reason is that the product of the monopolistically competitive firm has many close substitutes, whereas the product of the monopolist has no close substitutes. In the long run, however, there are important differences. The monopolist is protected by barriers to entry and can therefore make an economic profit in the long run, but monopolistic competition is characterised by freedom of entry. If monopolistically competitive firms earn economic profits in the short run, this will induce new firms to enter the market and they will eventually drive economic profits down to zero. In the long run, monopolistically competitive firms earn normal profits only, just like their perfectly competitive counterparts. The short-run equilibrium of a monopolistically competitive firm is illustrated in Figure 11-5(a). Like a monopolist, the monopolistically competitive firm faces a downward-sloping demand curve (D) for its product, which is also its average revenue (AR) curve. The only difference with the monopolist is that the price elasticity of demand is larger, since there are many close substitutes for the product of the firm. The firm’s marginal revenue curve (MR) is also downward-sloping and if AR is a straight line, it lies halfway between the price axis 190

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

FIGURE 11-5 The equilibrium of the firm under monopolistic competition P

P

MC

MC

AC

AC Price per unit

Price per unit

P1 Profit C1

Pe

E

MR 0

Q1 Quantity per period

E

D = AR

Q

MR 0

D = AR

Q Q

Qe Quantity per period

Short-run and long-run equilibrium positions of a monopolistically competitive firm are illustrated in (a) and (b) respectively. In both cases D is the demand curve for the product of the firm (or average revenue AR), MR is marginal revenue, MC is marginal cost and AC is average cost. The firm is in equilibrium where MR = MC. In the short-run conditions illustrated in (a), the firm is in equilibrium at output Q1 and price P1. The firm’s total profit is illustrated by the shaded rectangle. In the long run, however, the firm only makes a normal profit at an output of Qe and a price of Pe. At that price-output combination AR is tangent to AC, MR = MC and AR = AC.

and the demand (or average revenue) curve. Profit is maximised at the quantity where marginal revenue (MR) is equal to marginal cost (MC). The short-run profit-maximising quantity is thus Q1, for which the monopolistic competitor charges a price per unit of P1. The economic profit per unit of production is the difference between average revenue (AR) and average cost (AC) at Q1. The firm’s total economic profit is indicated by the shaded rectangle in the figure. This short-run equilibrium cannot be sustained in the long run. The economic profit attracts new entrants and as new firms enter the industry, two things happen. First, the demand for the product of the original firm falls. Graphically, this is illustrated by a leftward shift of the firm’s demand curve (and a corresponding leftward shift of the firm’s marginal revenue curve). Second, the demand curve for the product of the firm also becomes more price elastic, since there are now more close substitutes for the firm’s product than before. This process will continue until all the economic profits have been eliminated and there is no further entry into the industry. The long-run equilibrium of the monopolistically competitive firm is illustrated in Figure 11-5(b). The only possible equilibrium in the long run is where the individual firm produces a quantity (Qe) at which average revenue (AR) is equal to average cost (AC) (ie where economic profit is zero and only normal profit is earned). Graphically, this is indicated by a position where MR = MC and AR = AC. This implies that the AR curve must be at a tangent to the AC curve. In this respect the long-run profit position of the firm operating in a monopolistically competitive market is the same as that of a firm operating under conditions of perfect competition. However, for the reasons mentioned earlier, it is not possible to construct a diagram that illustrates the position of the industr y under conditions of monopolistic competition, as can be done in the case of perfect competition. In the movement towards the long-run equilibrium, the monopolistic competitor makes a series of adjustments and moves through a series of short-term equilibria based on perceived demand curves. The perceived demand curves differ from the actual demand curves shown in Figure 11-5 and are based on the incorrect assumption that the representative firm’s competitors will not react to its own adjustments. This is the reason why we indicated in Table 10-1 that the monopolistic competitor has incomplete information.

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

191

11.3 Oligopoly The word oligopoly comes from the Greek words oligoi, meaning “few”, and polein, meaning “sell”. Under oligopoly a few large firms dominate the market. When there are only two firms in the industry, it is called a duopoly. The product may be hom*ogeneous (eg steel, cement), but it is mostly heterogeneous (eg motorcars, cigarettes, household appliances, electronic equipment, household detergents). When the product is hom*ogeneous, the market is described as a pure or hom*ogeneous oligopoly, and when the product is heterogeneous (or differentiated) the market is called a differentiated oligopoly. Oligopoly is the most common market form in modern economies. When people talk about “big business” and “market power” they are usually referring to oligopolies (rather than to pure monopolies). Examples of industries in which there are only a few firms, or in which a few firms dominate the market, are sugar refining, insecticide production, domestic airlines, radio stations, banks, cellphone services, television channels, golf equipment, computer hardware, retail supermarkets and other competing firms in a certain geographical area (eg television repair shops in a city). The list is almost endless. See also Box 11-4 and Table 11-2 at the end of the chapter. As in many other countries, by far the largest proportion of the total value of manufacturing output in South Africa is produced by oligopolists. The main feature of oligopoly is the high degree of interdependence between the firms. Interdependence refers to the degree to which the actions of one firm affect (or are determined by) the actions of other firms. Under oligopoly there are so few suppliers that each firm is affected by the actions of the other firms. Each oligopolist therefore always has to consider how its rivals will react to any action that it takes. Another important feature of oligopoly is uncertainty. This is related to the interdependence among the firms. Because the firms are interdependent and no firm can ever be certain of the policies of its competitors, the firms operate in an uncertain environment. A third key feature is barriers to entr y, which may vary from industry to industry.

Strategy In an oligopolistic industry or market each firm must act strategically, since its profit depends not only on its own actions but also on the other firms’ actions. An oligopolistic firm must therefore always consider the possible impact of its decisions on the decisions and actions of its rivals. Under perfect competition and monopoly, strategic interactions are either unimportant (perfect competition) or absent (monopoly). Under oligopoly, however, each firm must constantly take strategic decisions. The most basic decision is whether to cooperate with the other firms in the industry or whether to compete with them. One of the techniques that can be used to analyse strategic oligopolistic behaviour is game theor y which is studied in intermediate and advanced courses in microeconomics. In this book we consider only the broad principles of cooperation (or collusion) between oligopolists and competition between them. Oligopolists have two possible broad strategies: t 5IFZDBOKPJOGPSDFTBOEBDUBTJGUIFZXFSFBNPOPQPMJTU UIFDPMMVTJPOPQUJPO t 5IFZDBODPNQFUFXJUIUIFJSSJWBMTUPHBJOBMBSHFSTIBSFPGJOEVTUSZQSPmUTGPSUIFNTFMWFT UIFDPNQFUJUJPO option). The competition, in turn, can be price competition or non-price competition. 䡲 COLLUSION Oligopolists often collude by entering into an agreement, arrangement or understanding to limit competition in the industry and maintain high levels of profitability in the long run. Sellers can, for example, agree to charge the same prices for certain products, to grant uniform discounts, or to limit their marketing and distribution to certain regions. A specific arrangement among otherwise competitive firms to limit output, to set prices, or to share the market, is called a cartel. The purpose of the members is to operate in a particular market as a shared monopoly. Some examples of cartels are provided in Box 11-5. Collusion is successful only if agreements can be enforced. When a large number of sellers are involved, successful collusion is highly unlikely (if not impossible). Some of the sellers will invariably break the agreement in the hope that the others will not notice or retaliate. With a small number of large producers, the distribution of profits among the members of a cartel is always a source of dispute. The conditions for successful collusion include the following: t 5IFOVNCFSPGmSNTNVTUCFTNBMMBOEUIFZNVTUCFXFMMLOPXOUPFBDIPUIFS t 5IFmSNTTIPVMEIBWFTJNJMBSQSPEVDUJPONFUIPETBOEBWFSBHFDPTUTBOEUIFSFGPSFIBWFBOJODFOUJWFUPDIBOHF prices at the same time by the same percentage. t 5IFQSPEVDUTIPVMECFIPNPHFOFPVTSBUIFSUIBOIFUFSPHFOFPVT NBLJOHJUFBTJFSUPBHSFFPOQSJDF t 5IFSFTIPVMECFTJHOJmDBOUCBSSJFSTUPFOUSZXIJDISFEVDFUIFQPTTJCJMJUZ BOEGFBS PGEJTSVQUJPOCZOFXmSNT t 5IFNBSLFUTIPVMECFTUBCMF t 5IFSFTIPVMECFOPHPWFSONFOUNFBTVSFTUPDVSCPSQSPIJCJUDPMMVTJPO 192

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

BOX 11-4 CONCENTRATION IN THE SOUTH AFRICAN BANKING SECTOR The South African banking sector is a good example of an oligopoly. At the end of February 2013 Standard Bank (24,4%), Barclays Africa/Absa (21,5%), FirstRand Bank (20,1%) and Nedbank (19,1%) had a combined market share of 85,1% of the market for bank deposits in South Africa. As far as total assets are concerned, their respective market shares were Standard Bank (26,2%), Barclays Africa/Absa (20,8%), FirstRand Bank (19,9%) and Nedbank (16,8%), yielding a total of 83,7%. The oligopolistic nature of the banking sector helps to explain why the major banks invariably adjust their rates virtually simultaneously (and almost immediately) when the South African Reserve Bank adjusts its repo rate (ie the rate at which it lends to the banks). As a result of this type of behaviour, the banking sector has often been accused of operating or acting like a cartel – see Box 11-5.

BOX 11-5 CARTELS A cartel is a formal collusive agreement whereby oligopolists agree on prices, market share, advertising expenditure, product development, etc. The classic example in South Africa was the cartel between the three major cement producers, Pretoria Portland Cement (PPC), Anglo-Alpha and Blue Circle, which together accounted for more than 90 per cent of the total cement sales in the country. These three firms long colluded on price setting and market share, and were even granted official permission to continue colluding after the practices concerned were prohibited in 1986. In October 1994, however, the government withdrew this permission and gave the cartel until the end of 1996 to wind up its affairs. Early in 2007 it transpired that Pioneer Foods (trading as Sasko and Duens Bakeries), Tiger Food Brands (trading as Albany Bakeries) and Premier Foods (trading as Blue Ribbon Bakery) had operated a bread cartel in the Western Cape. The companies had (i) simultaneously increased the price of bread to independent distributors in the Western Cape by the same amount, (ii) simultaneously decreased and fixed the maximum discount given to independent distributors and (iii) agreed not to supply each other’s independent distributors. The case was prosecuted by the Competition Commission and heavy fines were imposed. Another recent highprofile South African example of collusion between big firms was the cartel in the construction sector, where firms like Aveng, Murray & Roberts, WBHO, Basil Read, Stefanutti and Raubex colluded, fixed prices and rigged tenders (eg during the construction of the World Cup stadiums). In 2013 they were fined a total of R1,46 billion by the Competition Commission. A well-known international example of collusion is the Organisation of Petroleum Exporting Countries (OPEC), the cartel that was set up in 1960 by the five major oil-producing countries at the time (Saudi Arabia, Iran, Iraq, Kuwait and Venezuela). In contrast to the cement example, which involved three pricemaking firms, the international oil market was supplied by a number of price-taking firms and the formation of OPEC was aimed at improving the position of its members. In 1973, OPEC countries, which now numbered 13 and which together accounted for 70 per cent of the world’s supply of crude oil and 87 per cent of world oil exports, agreed to restrict their output by negotiating quotas. Even though the cartel was not a complete monopoly, it had substantial market power. Given the highly inelastic demand for oil (particularly in the short run), the output restrictions resulted in a quadrupling of the oil price within a year. Profits rose and many of the OPEC countries suddenly became very wealthy. By the end of the decade they were spending vast amounts on arms, infrastructure and economic development. Eager for yet more income they engineered a second output restriction that raised prices from $10–$12 per barrel to above $30 per barrel. However, the world supply subsequently increased, spurred by the high oil prices, and by 1985 OPEC’s share in world production had fallen to 30 per cent. The world demand for oil also became more price elastic in the long run as consumers and producers economised on the use of oil and new fuel-saving technologies were introduced.

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

193

As the world output grew, OPEC countries continually had to reduce their output to maintain world prices. With the more elastic demand, incomes in OPEC countries declined and the cartel came under increasing pressure. OPEC members started to violate their quotas and at the end of 1985 production quotas were eliminated. The OPEC example is typical of many cartel arrangements. Individual members of a cartel will always be tempted to cheat by cutting prices or (as in OPEC’s case) by selling more than their allocated quota. The OPEC example illustrates some basic problems associated with attempts to restrict output: t .BJOUBJOJOHNBSLFUQPXFSCFDPNFTNPSFEJGmDVMUPWFSUJNF t 1SPEVDFSTXJUINBSLFUQPXFSGBDFBCBTJDUSBEFPGGCf*ckFFOTIPSUSVOBOEMPOHSVOQSPmUT t "HSFFNFOUPWFSPVUQVUSFTUSJDUJPOJTEJGmDVMUUPNBJOUBJOPWFSUJNF Other examples of international oligopolies include the Big Four auditing firms (Ernst & Young, KPMG, PricewaterhouseCoopers and Deloitte Touche Tohmatsu) and the Big Three rating agencies (Standard & Poor’s, Moody’s and Fitch Ratings).

In practice, however, governments often prohibit collusion between firms. Anti-cartel actions are therefore usually important elements of competition policy. Where open collusion is prohibited, firms nevertheless often try to get around the law. Construction firms, for example, often collude when tendering for contracts. They get together beforehand and allocate the various contracts among themselves. They then all submit high-priced estimates for a particular contract, but the chosen one puts in a slightly lower (but still high) estimate and is awarded the contract. Similar practices exist in other industries, for example where producers decide to share the clients between them and quote prices in such a way that a par ticular client is virtually forced to continue buying from the same producer. Although such practices are illegal, it may be very difficult to prove that firms are making informal agreements behind closed doors. 䡲 COMPETITION When oligopolists compete, it is often in the form of non-price competition such as product development, advertising and other forms of marketing. Price competition tends to be avoided, since price competition will drive down the average industry profit. The more fiercely firms compete to obtain a larger share of industry profits, the smaller these industry profits will become. Even with non-price competition this will tend to occur because product development, advertising and other forms of marketing all raise industry costs.

No general theory of oligopoly Since oligopolistic firms are interdependent and rivalrous, and therefore act strategically, it is impossible to have a single, general theory of the pricing and output decisions of the firm under oligopoly. The general behaviour of oligopolists cannot be predicted with any certainty – under oligopoly almost anything can happen. The broad principle is that the closer we come to the real world, the more difficult it becomes to construct general theories. Instead of a general theory, there are many different oligopoly theories or models, each based on different assumptions about the reactions of rivals to the pricing and output decisions of the firm being studied. This prompted the American economist, Martin Shubik, to state: [W]ith action and reaction curves and marginal cost and revenue curves of a dozen varieties, diagram drawing has its finest hour when a new crop of seniors or fresh graduate students are given the one or two week special on oligopoly …2 We do not discuss the different oligopoly models in this book, but to give you some idea of what oligopoly models are about, we outline one of the classic oligopoly theories (that of the kinked demand curve). 䡲 AN EXAMPLE OF A THEORY OF OLIGOPOLISTIC BEHAVIOUR: THE KINKED DEMAND CURVE The theory of the kinked demand curve, devised in 1939 by the American economist, Paul Sweezy, is one of the many possible theories of oligopolistic behaviour. The kinked demand curve does not explain how price and output are determined under oligopoly, but it does illustrate the importance of interdependence and uncertainty in oligopolistic markets. It is also one of the possible explanations for the observed degree of relative price stability under oligopoly in the United States at the time Sweezy constructed the model. 2. Shubik, M. 1970. A curmudgeon’s guide to microeconomics. Journal of Economic Literature, 8(2): 416.

194

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

Price

Figure 11-6 illustrates the position of an oligop-olistic firm. FIGURE 11-6 The kinked demand curve Instead of explaining the price of the product and the level P of output, we start by assuming that the price of the product MC is P1 and that the quantity supplied is Q1. This is indicated by d point a which is a point on the demand curve for the product of the firm. If the oligopolistic firm raises or reduces the price of its product, the outcome will depend on the reactions of its D competitors. According to this particular theory, the oligopolist a M assumes that its competitors will not react to a price increase P1 by also raising the prices of their products. A price increase R will therefore lead to a relatively large fall in the quantity D demanded of the firm’s product (as consumers switch to the relatively cheaper products of the firm’s competitors). This d m is indicated by the demand curve Da. The oligopolistic firm thus believes that it will lose market share if it increases the Q 0 price of its product. However, the oligopolistic firm assumes Q1 that its competitors will react to a price decrease by lowering Quantity their prices as well. The oligopolistic firm will therefore not be able to increase its market share by lowering the price of its product. The quantity demanded of the firm’s product will r increase, but not to the same extent as it would decrease as a result of a comparable increase in the price of its product. The initial price is P1 and the quantity Q1. Dad is the This is indicated by the demand curve ad. This assumed kinked demand curve facing the oligopolistic firm. It is asymmetrical reaction of competitors to a price increase and based on asymmetric reaction by the firm’s rivals to a price decrease gives rise to a kinked demand curve, with the a price increase (Da) and a price decrease (ad). The kink at the level of the ruling price of the product. In effect the corresponding marginal revenue is broken up into MR oligopolist is assuming that there are two demand curves for and mr, corresponding to Da and ad respectively. The its product – one if competitors do not react to a price change gap between the two can accommodate a range of (DD), and one if they do react (dd). The kinked demand curve marginal cost curves such as MC. As a result the profitmaximising levels of price and quantity remain at P1 Dad thus consists of portions of two different demand curves. and Q1 respectively. The demand curve for the product of the firm is also its average revenue (AR) curve, and its marginal revenue (MR) curve lies halfway between the AR curve and the price axis. In the figure we also show the marginal revenue curve corresponding to Dad. It consists of two separate portions, MR (corresponding to Da) and mr (corresponding to ad). We know that profit is maximised at the level of output where MR = MC. In the figure we also show a marginal cost (MC) curve which passes through the gap between the two marginal revenue curves. Profit is thus maximised at the existing quantity and price (Q1 and P1). The significance of the kinked demand curve lies in the fact that MC can increase or decrease significantly without affecting equilibrium output and price – any MC curve which passes through the gap between MR and mr will yield the same equilibrium quantity and price. In Sweezy’s time, oligopoly was characterised by stable prices and output levels. According to the theory of the kinked demand curve, this is the result of the high degree of interdependence among oligopolists, and the uncertainty about how competitors will react to price changes. It should be emphasised, however, that the kinked demand curve is but one of a wide range of theories explaining oligopolistic behaviour. As we emphasised earlier, no general theory of oligopolistic behaviour is possible. Like a monopolist and a monopolistic competitor, an oligopolist faces a downward-sloping demand curve. However, the shape of the curve is uncertain, since this depends on how its competitors will react to price changes – they may decide to follow or not to follow any price change. 6OEFS PMJHPQPMZ UIF FOUSZ PG OFX mSNT JT NPSF EJGmDVMU UIBO VOEFS QFSGFDU DPNQFUJUJPO PS NPOPQPMJTUJD competition. However, in contrast to monopoly, entry is possible and the mere threat of possible entry by new firms may be as effective in disciplining oligopo-lists as actual competition would be. The fact that the market is dominated by a few large producers does not mean that there is little or no competition under oligopoly. On the contrary, competition is often intense, although it tends to be non-price competition, rather than price competition (which they tend to avoid). The more intensely oligopolists compete, the closer they are likely to come to perfectly competitive output and price.

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

195

Advertising and product diversification as barriers to entry Oligopolistic firms often use advertising and product diversification to create barriers to entry. Some firms spend huge amounts on advertising to create product awareness and loyalty to well-known brands (eg Coca-Cola and Castle Lager), thereby making it very expensive for potential rivals to enter the market. Advertising is discussed further in Box 11-6. Product diversification can also be used as a barrier to entry. In many industries the existing firms produce multiple brands of the same product aimed at different market segments, which compete actively against each other as well as against the products of other firms. In South Africa, for example, Unilever produces Omo, Surf, Skip and Sunlight (fabric cleaners), Lux, Dove, Vinolia, Breeze, Geisha and Sunlight (soaps), Shield, Impulse, Pears, Axe, Brut and Storm (deodorants), and Joko, Glen, Glenton, Pitco, Lipton Rooibos, Lipton Herbal, Lipton Ice and Lipton Laager (teas), to mention but a few, while Steinhoff produces Edblo, Softex, Slumberland, Sealy, Ther-a-pedic and Dreamland (mattresses) and a whole range of furniture brands. Why do oligopolistic firms act in this way? They want to gain a larger share of the market and make it harder for a new entrant to enter the market and to obtain a significant share of the market with a single product. By advertising all the different brands and creating brand loyalties they raise the barriers even further.

BOX 11-6 ADVERTISING One of the main forms of non-price competition is advertising. Firms advertise to increase the demand for their particular product or to reduce the price elasticity of the demand for their particular brands of a differentiated product. The following table lists the ten largest private advertisers in South Africa from January to August 2013. Rank

ù ù ù ù ù ù ù ù ù 10

Advertiser 6OJMFWFS4" 4IPQSJUF)PMEJOHT 7PEBDPN 4"#.JMMFS 1JDLO1BZ 'JSTU3BOE#BOL .5/ 5FMLPN4" 4QBS4" Standard Bank

Source: Adfocus 2013, Supplement to the Financial Mail, 29 November: 59

Not surprisingly, the companies listed in the table are near-monopolists or oligopolists. Oligopolists and monopolistic competitors have the largest incentive to advertise, but firms engaged in monopolistic competition are too small to feature in the list. Unilever, mentioned in the text, is a large producer of a variety of consumer products. Shoprite Holdings (which includes Checkers), Pick n Pay and Spar are oligopolists that continuously try to maintain or increase their market share by advertising a range of “specials” to lure customers to their stores. The ultimate purpose is to convince shoppers that they offer the best value for money. SABMiller is a near-monopolist, Vodacom and MTN are oligopolists in the cellular phone market and TelkomSA also provides cellular services. (Cell C was in the 16th position.) The banking sector, including FirstRand Bank and Standard Bank, is also an oligopoly. As emphasised in the text, oligopolistic firms tend to refrain from price competition. Instead, they use advertising and other forms of non-price competition to maintain or increase their share of the market. Even

196

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

monopolists or near-monopolists sometimes advertise extensively to increase the demand for their products. Only perfectly competitive firms have no incentive to advertise, since they can sell their output at the ruling market price. An organisation representing a perfectly competitive industry, however, might still advertise on behalf of the firms in the industry in an attempt to increase the demand for the product of the industry (eg milk, pork). Many firms clearly have an incentive to advertise, but are the huge amounts spent on advertising justifiable from a broader economic perspective? Is society not simply wasting the scarce resources devoted to advertising? This is a controversial issue that often generates heated debate among economists and other observers. Critics argue that much advertising is psychological rather than informational, that firms attempt to manipulate people’s tastes and to create desires that might otherwise not exist. They also argue that advertising reduces competition, for example by trying to convince consumers that products are more different than they actually are. Also, to the extent that advertising succeeds in establishing brand loyalties, the price elasticity of demand for the products falls and the firms can increase their profits. Finally, critics point out that advertising costs are part of production costs and that it is ultimately the consumer that bears most, if not all, of the burden in the form of higher prices. Against this, defenders of advertising argue that advertisem*nts convey information (eg about prices, new products, the location of outlets) that enables customers to take more informed decisions, thereby promoting competition and improving the efficiency of resource allocation. They also argue that advertising allows new firms to enter more easily (which implies that they disagree with the view that advertising tends to raise barriers to entry). Although the debate about the economic advantages and disadvantages of advertising is by no means settled, it is interesting to note that certain professions that were previously prohibited from advertising (eg medical doctors, dentists, lawyers) are nowadays allowed to advertise freely, presumably to increase competition. On the other hand, there has been a total clampdown on the advertising of tobacco products, which are regarded as socially and physically undesirable, in South Africa and elsewhere.

11.4 Comparison of monopoly and imperfect competition with perfect competition In this section we compare monopoly and imperfect competition with perfect competition. We start with monopoly.

Monopoly versus perfect competition Analytically, the only valid comparison is between the long-run equilibrium of a perfectly competitive industry (or market) and a monopoly. In other words, we compare a monopoly with the situation that would have prevailed if there had been a large number of firms producing the product under conditions of perfect competition. Moreover, the comparison must pertain to the long run, since all possible adjustments can only be made in the long run. In Figure 11-7 MC represents the marginal cost of the industry, while the market demand curve is represented by the average revenue curve (AR). Under perfect competition the industry (or market) supply curve is obtained by adding all the individual supply curves (ie the rising parts of the marginal cost curves of all the firms in the industry). For a perfectly competitive industry, MC can thus be regarded as the industry (or market) supply curve (S). The equilibrium price and quantity are determined by the intersection of supply (S) and demand (AR). The equilibrium under perfect competition is at Ec, that is, at a price Pc and a quantity Qc. For the same cost and demand conditions, the equilibrium of a monopolist is at price Pm and quantity Qm. If the industr y is a monopoly, the price P will thus be higher and the output Q lower than if perfect competition prevails. An example would be if avocado farmers who initially operate under perfect competition set up a marketing agency through which they sell all their avocados. The agency then acts as a monopoly supplier to the market. Production cost will still be the same but prices will be higher and quantities lower than before. Under perfect competition MC = P and production occurs at the minimum of AC in the long run where all firms earn a normal profit only (see Figure 10-6). Perfect competition thus meets the criteria for allocative and

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

197

FIGURE 11-7 Comparison between monopoly and a perfectly competitive industry P

FIGURE 11-8 Comparison between monopoly and perfect competition if monopolistic firm has a lower cost structure P

S = MC

Em

Pm

Pc

Ec

MCm Pc

AR

MR 0

Price per unit

Price

S = MC

Q Q Qm

Qc

D = AR 0

Quantity

Q

Qc MR Quantity per period

AR is the demand curve for the product of the industry and MR is the monopolist’s marginal revenue curve. Marginal cost MC is also the supply curve S for the perfectly competitive industry. Under perfect competition, long-run equilibrium Ec is established by the interaction of demand AR and supply S at a price Pc and a quantity Qc. Equilibrium for the monopolist Em is at a price Pm and a quantity Qm. Under monopoly the equilibrium price is higher, and the equilibrium quantity lower, than under perfect competition, ceteris paribus.

D is the demand curve and also the average revenue curve (AR) for the product of the industry, while MR is the monopolist’s marginal revenue curve. Marginal cost (MC) is also the supply curve S for the perfectly competitive industry. Under perfect competition, long-run equilibrium is at price Pc and quantity Qc. MCm indicates the lower cost structure of the monopolistic firm. The firm will maximise profits where MR = MC at the same quantity Qc and price Pc as under perfect competition. If the monopolist’s MC lies above MCm, the monopolist’s price P will still be higher and quantity Q still lower than under perfect competition, but if MC lies below MCm, then P will be lower and Q higher than under perfect competition.

productive efficiency. In contrast, monopoly does not meet either of these criteria. At equilibrium, P is greater than MC and the monopolist does not produce where AC is at a minimum. Monopoly is thus an inefficient market structure. The monopolist produces less, employs fewer resources, charges a higher price than society will prefer and does not produce at the lowest possible cost per unit of output. This conclusion, however, is based on the assumption that the cost conditions are the same for a single, large producer as for a large number of small producers. If one large firm can produce a product (eg a motorcar) more cheaply than a large number of small producers, then monopoly is not necessarily inefficient. In Figure 11-7 we assumed that the perfectly competitive industry and the monopolistic firm are subject to the same cost conditions. But what if the monopolist can achieve economies of scale that are not available to the numerous small producers in the perfectly competitive industry? The answer depends on the extent to which the monopolistic firm can reduce its costs. In Figure 11-8 we illustrate a situation in which the monopolistic firm produces at the same price and output as the perfectly competitive industry. The S = MC curve indicates the supply curve of the competitive industry, which is equal to the sum of the rising parts of the MC curves of all the individual producers. As in Figure 11-7, Pc indicates the equilibrium price and Qc the equilibrium quantity in the perfectly competitive market, since equilibrium occurs where demand D (= AR) intersects supply S (= MC). MCm indicates the lower marginal cost of the monopolistic firm, which produces where MC = MR (ie quantity Qc) at price Pc (ie the same price and quantity as the perfectly competitive industry). This position serves as a reference point. If the monopolist’s marginal cost lies between S = MC and MCm, the equilibrium price (for the monopolist) will still be higher and the equilibrium quantity still lower than under perfect competition. However, if the monopolist’s MC curve lies below MCm, then its equilibrium price will be lower and the equilibrium quantity higher than under perfect competition. In other words, if the economies of scale are large enough, then the classical case against monopoly need not hold. Note, however, that even in this case allocative efficiency will not be achieved, since P will still be greater than MC.

198

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

Social costs of monopoly power We can use the notions of consumer surplus and producer surplus introduced in Chapter 4 to examine the social costs of monopoly power. For this purpose we assume again, as in Figure 11-7, that the monopolistic firm has the same cost structure as the perfectly competitive industry. This is illustrated in Figure 11-9 which is similar to Figure 11-7, with Pc and Qc indicating the equilibrium price and quantity under perfect competition and Pm and Qm the corresponding values under monopoly. As a result of the higher price Pm under monopoly, compared to price Pc under perfect competition, consumers lose areas A and B. Area A now becomes part of the producer surplus, but B is simply lost. This allocative loss is called a deadweight loss to society. Likewise, area C, which forms part of the producer surplus under perfect competition, is also lost. The total deadweight loss is thus B + C. What about the area under MC between Qm and Qc? The resources that would have been used to produce the difference between Qc and Qm are now released for use elsewhere in the economy. There is thus no deadweight loss in this case. With monopolisation, the monopolist thus gains at the expense of the consumers (area A) and society suffers a deadweight loss (areas B and C). Similar techniques can be used to analyse situations where the cost structure of the monopolistic firm differs from that of a perfectly competitive industry.

Is monopoly a bad thing? Most people will answer “yes” to this question. There are, however, a number of misconceptions about monopoly. In this subsection we first deal with some of the misconceptions, and then we discuss some of the arguments for and against monopoly. Many of these arguments apply to oligopoly as well. 䡲 SOME POPULAR MISCONCEPTIONS ABOUT MONOPOLY

Price per unit

It is often claimed that a monopolist can charge virtually any price it wants. This is not true. Like any other firm, a monopolist is constrained by the demand for its product. A monopolistic firm cannot sell whatever it wants at any price it decides to set. A related claim is that a monopolist will charge the highest FIGURE 11-9 The social costs of monopoly price it can get. This is not the case. The monopolist will set P the price for its product at a level that will maximise total profit, not at the highest possible price it can charge. Many people believe that monopoly guarantees economic profits (in the short run and in the long run). However, as we pointed out earlier, monopolists can also make losses. Whether S = MC a monopolist makes a profit or a loss depends on the demand for the product, the cost structure of the firm, and its pricing Pm and output decisions. In fact, when the demand for its product A B falls drastically, a monopolist can be forced out of business. Pc This happened, for example, when trams were replaced by C buses, taxis and other forms of transport. There is also a popular belief that once a profitable monopoly is established, its position is virtually unassailable and that D = AR Q it therefore has almost absolute economic power. This is 0 Qc Qm not the case either. Even a monopolist must always consider MR potential competition from firms producing products which Quantity per period may become substitutes for its product if the price increases. For example, if the price of electricity is pushed up too high, The curves are exactly the same as in Figure 11-7. consumers may switch to wood, paraffin, coal, petrol and When a perfectly competitive industry is monopolother energy sources. Or if the relative price of beer is raised, ised, the equilibrium price rises from Pc to Pm and consumers might switch to wine, spirits, soft drinks or even the equilibrium quantity falls from Qc to Qm. Area A water. illustrates the monopolist’s gain at the expense of the consumers. Area B, which (like A) was part of the consumer surplus under perfect competition, simply disappears. This is a deadweight loss to society. Likewise, Area C, which formed part of the producer surplus under perfect competition, also disappears. The total deadweight loss is thus B + C.

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

199

The mere threat of competition may discipline a monopolist almost as much as actual competition would. Apart from potential domestic competition, a monopolist in a particular country is always subject to potential competition from similar firms in other countries. A monopolist must also be sensitive to the ruling political climate and the possibility of government regulation. If it is believed that a monopolist is abusing its economic or market power, government may decide to intervene and regulate or control its activities. 䡲 THE CASE AGAINST MONOPOLY (OR BIGNESS) We now examine some of the arguments against mono-poly and the counter-arguments of those who defend the existence of monopoly. You should note, however, that many of the arguments apply to all large, powerful firms, whether or not they are the sole suppliers of goods and services. The most powerful corporations in South Africa produce hundreds of different goods and services which are sold in a large number of markets in which they compete with other firms. Their financial strength, however, often gives them similar advantages to those they would have if they were the sole suppliers of the goods or services in the markets concerned. As we have seen, monopoly output is lower than perfectly competitive output and monopoly price is higher than perfectly competitive price, for a given set of cost and demand conditions. Monopoly makes goods scarcer (and more expensive), ceteris paribus, than they would be if the industry were competitive, and this results in an inefficient allocation (or a misallocation) of resources. This conclusion is only valid, however, if the monopolist’s cost structure is the same as that of a competitive industry. One of the reasons for the existence of monopoly is that it permits economies of scale. If one firm can produce a product at lower cost than a number of small, independent firms can (ie when there is a natural monopoly), monopoly is not necessarily an inefficient market structure. In a number of industries which require large capital outlays (eg the motorcar, cement, aluminium and heavy engineering industries), a small scale of production is inefficient and perfect competition is simply not feasible. Critics of monopoly often argue that there is little or no incentive for innovation or technological improvement under monopoly. Since there is no competition, management may decide to take things easy, avoiding the risks associated with innovation. The British Nobel Laureate, John Hicks, once remarked that the “best of all monopoly profits is the quiet life.” It may be argued, however, that only large firms have the resources required for significant innovation. It is also argued that although a patent gives the holder a monopoly (see Box 11-1), it also stimulates innovation. Why, for example, would a firm spend time and money on the development of a new product or idea if it can be copied by a rival firm? Another argument against monopoly (or bigness) is that it leads to managerial inefficiency. Under perfect competition all firms are forced to produce as cheaply as possible to avoid bankruptcy, but monopolies are not forced to be efficient. If there is no competition, then inefficient, high-cost firms can survive. Economists call this X-inefficiency and it occurs, for example, if managers have other goals (eg firm growth, avoidance of risk, providing jobs for incompetent friends or relatives) which conflict with cost minimisation. X-inefficiency may also arise because the firm’s workers are poorly motivated. The counter-argument is that monopolists are always subject to potential or indirect competition from firms in other industries, which try to develop substitute products, or from firms in other countries. A related complaint is that monopolists do not pay sufficient attention to the quality of their products or their ser vice to customers. The classic examples are state monopolists that leave consumers with little choice but to accept poor products and service. In a mixed economy, however, potential competition is always a disciplining factor. In South Africa, for example, Telkom (and previously the Post Office) traditionally had a monopoly on telecommunication, and customers invariably complained about the bad service. In recent years, however, Telkom has had to compete with cellular phones, electronic mail and other forms of communication, and has made a concerted effort to improve its service and its image. Critics also argue that monopoly gives rise to an unfair or socially unacceptable distribution of income and wealth. They argue that mono-polists make substantial economic profits which accrue to the owners (or shareholders) at the expense of consumers, who have to pay high prices for the products. The counter-argument is that much of the profit is reinvested in the economy, and that the profits are required to finance continued economic growth. While there is no guarantee that this will indeed happen, it should be borne in mind that a monopolist is not an inherently evil institution which robs people or forces its products down consumers’ throats. A monopolist simply exploits the fact that it is the sole seller of a good or service. Monopolists and would-be monopolists, however, tend to engage in rent-seeking behaviour. This refers to activities designed to transfer income or wealth to a particular firm or resource supplier at someone else’s or society’s expense. Since a monopolist can earn economic profits in the long run, there is an incentive for monopolists and aspiring monopolists to do everything in their power to acquire or maintain monopoly privileges granted by government (eg in the form of an exclusive franchise or licence). They often spend large amounts

200

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

FIGURE 11-10 Long-run equilibrium of the firm under perfect and monopolistic competition P

More generally, large monopolists (and all other large firms or corporations) have significant economic power and are often also politically powerful. There is thus a legitimate fear that they may be able to dictate the politics in the country and, in particular, the economic policy. On the other hand, one of the major arguments raised in favour of monopoly (or bigness) in South Africa is that the country needs large, powerful firms to be able to compete against foreign suppliers in the domestic and international markets.

Price per unit

on legal fees, lobbying and public relations advertising to persuade government to grant or sustain their privileged positions. Rent-seeking expenditures raise costs without adding anything to a firm’s output and are thus socially wasteful.

What, then, is our conclusion? Is monopoly (or bigness) a good thing or a bad thing? On balance it is difficult to give an unqualified answer, but the burden of proof is on those who defend monopoly (or bigness). As we have seen, monopoly is subject to certain inherent inefficiencies and there is always the possibility that monopolists (or large firms) will abuse their economic power. Nor are there any guarantees that the potential advantages of monopoly will be realised, or passed on to consumers. It is not surprising, therefore, that most polists to do whatever they like.

It is assumed that both firms have the same long-run average cost, illustrated by LRAC. Dc and Dmc represent the demand curves facing the perfect competitor and the monopolistic competitor, respectively. The perfectly competitive firm produces Qc at price Pc, while the monopolistically competitive firm produces Qmc at price Pmc.

LRAC

Pmc

Dc

Pc

Dmc 0

Qmc

Qc

Q Q

Quantity per period

governments do not simply allow mono-

Monopolistic competition versus perfect competition The long-run equilibrium of a monopolistically competitive firm occurs when only normal profits are made. In this respect there is no difference between monopolistic competition and perfect competition. But in long-run equilibrium, the monopolistically competitive firm produces where price is higher than marginal cost and where average cost is not at a minimum – see Figure 11-5(b). Monopolistic competition is therefore neither allocatively nor productively efficient. Although monopolistically competitive firms do not make economic profits in the long run (as monopolists do), monopolistic competition is also characterised by an inefficient use of resources. Consumers pay a higher price and less output is produced than under perfect competition. The long-run equilibrium of the firm under perfect and monopolistic competition can be compared formally as in Figure 11-10. We assume that both firms have the same long-run average cost curve LRAC. Dc indicates the horizontal demand curve facing the perfectly competitive firm while Dmc illustrates the downward-sloping, relatively price-elastic demand curve facing the monopolistic competitor. The perfectly competitive firm will produce quantity Qc at price Pc while the monopolistically competitive firm will produce quantity Qmc at price Pmc. Under monopolistic competition the price is higher and the quantity lower than under perfect competition. Moreover, in contrast to perfectly competitive firms, monopolistically competitive firms do not produce where LRAC is at a minimum. The latter therefore have excess capacity, indicated by the difference between Qc and Qmc. Note that because we cannot illustrate the long-run equilibrium of a monopolistically competitive industry the only possible comparison is between a perfectly competitive and a monopolistically competitive firm. The only way in which allocative and productive efficiency can be achieved is to standardise the product (ie to sacrifice the variety offered by the different firms) in which case monopolistic competition will no longer exist. Consumers are, however, normally willing to pay a slightly higher price in order to obtain a wider range of products (eg shirts, dresses) from which to choose. Another possible advantage of monopolistic competition is that it provides an incentive to firms to develop new varieties of the product in an attempt to achieve a competitive edge over their rivals. If consumers are willing to pay a premium for variety, then monopolistic competition does not necessarily reduce society’s economic welfare.

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

201

Under perfect competition there is no incentive for the individual firm to advertise. As we explained in Section 11.3, the only possible advertising will be undertaken on behalf of the industry as a whole (to increase the market demand for the product). Monopolistic competitors, however, have a strong incentive to advertise and market their product in an attempt to differentiate it from the other varieties of the product and establish brand loyalty among consumers. The greater the degree of differentiation, the less elastic demand will be. Advertising and marketing costs, however, raise costs and prices. The LRAC curve of the monopolistic competitor is therefore likely to lie above that of the perfect competitor.

Oligopoly versus perfect competition Although oligopoly is a form of imperfect competition, oligopolistic competition is much more active than perfect competition. Oligopolistic competition is an active, strategic process of moves and countermoves, in which one firm’s gains are often at the expense of the other firms in the industry. But while oligopolistic competition can be intense and aggressive, perfect competition is entirely passive. Each firm is so insignificant that no one of them takes into account what the other individual firms do. Yet this passive competition is quite effective and prevents a perfectly competitive firm from “exploiting” consumers. Since there is no general theory of oligopoly we cannot compare oligopoly with perfect competition in formal terms, as we could in the case of monopoly and monopolistic competition. However, if oligopolists collude and jointly maximise profits, they will in effect be acting together as a monopoly and all the disadvantages of monopoly will also be experienced under oligopoly. Graphically, the position of the industry will then be the same as that of a monopolist, as illustrated in Figure 11-2. Moreover, depending on the size of the individual oligopolists, there may be less scope for economies of scale than under monopoly. As emphasised earlier, oligopolists are also likely to engage in much more extensive advertising than monopolists. On the positive side, oligopolists have a considerable incentive to engage in research and development (much more so than a monopolist). If an oligopolistic firm succeeds in producing a new or better product, it will gain an advantage over its rivals and it may be some time before the latter can respond by producing a similar product. Where patent rights are involved (eg in the pharmaceutical industry), the incentive will be even stronger. Research and development can also succeed in lowering costs and improving the competitive position of the oligopolistic firm. Another potential advantage, which we also mentioned in respect of monopolistic competition, is that non-price competition through product differentiation may result in a greater choice for the consumer. In many oligopolistic markets (eg in the case of cellular phones and motor vehicles) a huge range of products are supplied to meet the needs of different groups of consumers. Sometimes the power of oligopolists in certain markets is offset to some extent if they sell their products to other oligopolists. Given the prevalence of oligopoly in the modern economy, this often happens. In the South African food industry, for example, there are some powerful producers of processed foods, but they sell most of their products to the equally powerful large supermarket chains, who can use their market power to keep prices down. This phenomenon, where the power of a seller is offset by powerful buyers, who can prevent the price from being pushed up, is known as counter vailing power. As early as the 1950s, John Kenneth Galbraith, an eminent American economist, emphasised the power and prevalence of oligopolists in the United States and noted that price competition between suppliers had declined but had been replaced (as a restraint on oligopolistic power) by countervailing power. It should be clear that it is difficult to draw any general conclusions about the impact of oligopoly, particularly in relation to perfect competition. In some cases the disadvantages to society may outweigh the advantages but in other cases the outcome of the rivalrous behaviour of oligopolists may be little different from that under perfect competition.

11.5 Policy with regard to monopoly and imperfect competition Where monopolistic or oligopolistic conditions prevail, governments sometimes intervene in an attempt to reduce supernormal (or monopoly) profits, achieve a more efficient allocation of resources and prevent abuses of market power. Various types of intervention can be distinguished, including the following: t (PWFSONFOUDBOMFWZtaxes on the firms concerned to reduce their profits. Powerful firms may, however, shift at least part of the tax to the consumers of the products. If this happens, prices will be raised and the quantities supplied will be reduced. The allocation of resources will then be even more inefficient after the introduction of the tax than it was before. t "TFDPOEBMUFSOBUJWFJTgovernment ownership. Certain products (eg water, electricity) are produced efficiently by monopolists. As indicated earlier, such natural monopolists are frequently owned by government. Government may also decide to purchase (or simply take over) private monopolists. This is called nationalisation (see Chapter 15). Nowadays, however, it is generally accepted that production should preferably be left to private firms and 202

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

that government should regulate rather than nationalise these firms. In fact, the current trend is to privatise government-owned firms and to regulate them, rather than to maintain government ownership. t "UIJSEBMUFSOBUJWFJTregulation, which consists of laws, rules or regulations that are issued to control the pricing, production or other decisions of firms.3 Such rules, laws or regulations prescribe the conditions under which the firms can do business. For example, to prevent powerful firms from raising prices, government may decide to fix maximum or ceiling prices for their products. However, as we explained in Chapter 5, such price controls are a blunt instrument which can cause a variety of distortions in the economy. t "GPVSUIBMUFSOBUJWFJTcompetition policy. Most countries have a policy with respect to competition, economic concentration and possible abuses of economic power. In the United States it is called anti-trust policy and in South Africa it is called competition policy. The objectives are to promote competition, curb the potential abuses of economic power and exploit the advantages of bigness to the benefit of society at large. Government can, for example, promote competition by opening up the economy to imports. Competition from imports is probably one of the most effective ways of preventing monopoly and the abuse of economic power. In South Africa, the lowering of import tariffs and the abolition of import quotas probably did more to promote competition in the domestic market than any other measures aimed at achieving this goal. Other barriers to entry can also be reduced or eliminated to encourage competition in the domestic market, for example by making it easier for small businesses to enter the market. We now take a closer look at competition policy.

Competition policy Competition policy has three basic aims: t UPQSFWFOUFYJTUJOHNPOPQPMJFTBOEPUIFSQPXFSGVMmSNTBCVTJOHUIFJSQPXFS NPOPQPMZQPMJDZ

t UPSFHVMBUFUIFHSPXUIPGNBSLFUQPXFSUISPVHINFSHFSTBOEBDRVJTJUJPOT NFSHFSQPMJDZ

t UPQSFWFOUUIFBQQMJDBUJPOPGSFTUSJDUJWFQSBDUJDFT QBSUJDVMBSMZCZPMJHPQPMJTUJDmSNT SFTUSJDUJWFQSBDUJDFQPMJDZ

Restrictive practices include the fixing of selling prices (eg resale price maintenance), collusion with regard to tenders, price discrimination by a dominant firm, collusion in respect of market share (eg the division of markets by allocating customers, suppliers, territories or specific types of goods and services among the different firms in the industry), restrictions on output or technical development, making purchases of one item conditional upon purchases of another item and exclusive dealing agreements between manufacturers and retailers. *OUIF6OJUFE4UBUFTUIFmSTUDPNQFUJUJPOQPMJDZ DBMMFEBOUJUSVTUQPMJDZ XBTJOUSPEVDFEJOXIFO$POHSFTT passed the Sherman Act. Monopoly and trade restraints were declared illegal but the solution was not sought in the form of regulation and government ownership. Instead, the focus was on competition and the market. Interestingly FOPVHI POFPGUIFmSNTUIBUSFHVMBSMZSBOGPVMPGUIFTUSJDUBOUJUSVTUMBXTJOUIF6OJUFE4UBUFTXBT%F#FFST UIF South African firm that supplies about 60 per cent of the world’s diamonds and virtually controls the international diamond market. *OUIF6OJUFE,JOHEPNDPNQFUJUJPOQPMJDZEBUFTCBDLUP"UQSFTFOUUIFSFBSf*ckPNBJOCPEJFTSFTQPOTJCMF for implementing the policy: the Office of Fair Trading and the Monopolies and Mergers Commission. 5IF&VSPQFBO6OJPO &6 BMTPIBTBTUSJDUDPNQFUJUJPOQPMJDZ*O GPSFYBNQMF UIF&VSPQFBO$PNNJTTJPO UIF CPEZ SFTQPOTJCMF GPS JNQMFNFOUJOH UIF &6T DPNQFUJUJPO QPMJDZ CMPDLFE B NFSHFS Cf*ckFFO UIF QMBUJOVN operations of Lonrho (a British company) and Gencor (a South African company). In South Africa, the first comprehensive legislation specifically aimed at dealing with these matters was the 3FHVMBUJPOPG.POPQPMJTUJD$POEJUJPOT"DUPG*O+VMZBOFX"DU UIF.BJOUFOBODFBOE1SPNPUJPO PG$PNQFUJUJPO"DUPG XBTQSPNVMHBUFEJOSFTQPOTFUPBHSPXJOHDPODFSOPWFSFDPOPNJDDPODFOUSBUJPO and obstacles to competition in South Africa. The thrust of the new Act was to promote competition (instead of regulating monopolistic conditions) and a Competition Board was established to implement the policy. An JOUFSFTUJOH EFWFMPQNFOU EVSJOH UIF T XBT BO JODSFBTJOH GPDVT PO HPWFSONFOU JOUFSGFSFODF BT B TPVSDF PG FDPOPNJDDPODFOUSBUJPOPSBMBDLPGDPNQFUJUJPO%VSJOHUIFFBSMZT UIFTUBUFEQPMJDZPGUIF$PNQFUJUJPO#PBSE was to promote what was labelled as “effective competition”. The existence of large firms or the concentration of power in the hands of one or a few firms was not necessarily regarded as undesirable. The crucial factor was their behaviour. Restrictive practices such as resale price maintenance and various forms of collusion were regarded as undesirable. The Board was also empowered to investigate possible increases in economic power through mergers and acquisitions. Officials of the Board maintained that the fear of adverse publicity associated with formal investigations persuaded many firms to curtail or abolish restrictive practices or plans for mergers or acquisitions. 3. The opposite of regulation is deregulation, that is, the elimination of laws, rules and regulations that govern particular industries and which limit competition or otherwise hamper the functioning of market forces. The case for deregulation is based partly on the conviction that regulation often reduces rather than increases competition. Industries that have been deregulated in South Africa and elsewhere include road transport and the airline industry.

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

203

*O DPNQFUJUJPO QPMJDZ SFDFJWFE B GVSUIFS CPPTU XIFO UIF "GSJDBO /BUJPOBM $POHSFTT XIJDI IBE CFFO propagating a vigorous anti-monopoly policy, came into power. Barriers to entry were perceived to be at variance with the aspirations of previously disadvant-aged groups who needed to gain access to scarce resources and economic power if the country’s economic transformation was to be market based. The economic power of the large conglomerates that were dominating the South African economy had to be curtailed in order to revitalise the economy and address the inequalities of income and wealth. In addition, South Africa’s reintegration into the world economy demanded an improvement in the competitive ability of South African firms (although it is sometimes argued that large firms are required to compete effectively in international markets), while new trade agreements FHXJUIUIF&VSPQFBO6OJPO BMTPSFRVJSFEUIBU4PVUI"GSJDBODPNQFUJUJPOMBXTNFFUDFSUBJOSFRVJSFNFOUT All this led to vigorous analysis, controversy, debate and negotiations between government, business and labour, DVMNJOBUJOHJOUIFQSPNVMHBUJPOPGUIF$PNQFUJUJPO"DUPG5IF"DUQSPWJEFEGPSUIFFTUBCMJTINFOUPGB Competition Commission and a Competition Tribunal. In terms of the Act, the Competition Commission seeks to provide all South Africans with an equal opportunity to participate fairly in the national economy, in order to promote a more effective and efficient economy. More specifically, it is responsible for t JOWFTUJHBUJOHDPNQMBJOUTBHBJOTUmSNTFOHBHJOHJOSFTUSJDUJWFCVTJOFTTQSBDUJDFT SFTUSJDUJWFQSBDUJDFQPMJDZ

t FWBMVBUJOHBOETVCTFRVFOUMZBQQSPWJOHPSQSPIJCJUJOHNFSHFSTBOEBDRVJTJUJPOT NFSHFSQPMJDZ

t DPOEVDUJOHSFTFBSDI QSPWJEJOHQPMJDZJOQVUT FEVDBUJOHBOEJOGPSNJOHTUBLFIPMEFST BOEDPOEVDUJOHSFHVMBUPSZ and legislative reviews One of the features of the Act is that all mergers and acquisitions have to be notified to the Competition Commission. Moreover, intermediate and large mergers may be implemented only after the necessary approval has been obtained from the Commission. The Commission’s recommendations are forwarded to the Competition Tribunal, which may accept or reject such recommendations, while subsequent disputes may be referred to the Competition Appeal Court. In evaluating mergers, the Commission has to consider competition concerns, possible efficiencies that could arise and public interest issues. The latter include the impact of the transaction on: t BQBSUJDVMBSJOEVTUSJBMTFDUPSPSSFHJPO t FNQMPZNFOU t UIFBCJMJUZPGTNBMMBOENFEJVNTJ[FECVTJOFTTFTBOEmSNTPXOFEPSDPOUSPMMFECZIJTUPSJDBMMZEJTBEWBOUBHFE individuals to become competitive t UIFBCJMJUZPG4PVUI"GSJDBOmSNTUPDPNQFUFJOUFSOBUJPOBMMZ

11.6 Concluding remarks We conclude the chapter by summarising some key differences and providing examples of each type of market structure in Table 11-2.

204

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

TABLE 11-2 The different market structures: a summary Type of market

Shape of demand curve facing the firm/firm’s control over price/profit situation

Examples (often approximations)

Perfect competition

Horizontal demand curve; the firm is a price taker; economic profits possible in short run, but only normal profits in the long run due to freedom of exit and entry

International commodity markets (gold, platinum, oil, maize, sugar), financial markets (JSE, foreign exchange market – when exchange rates are free), local fresh produce markets (vegetables, fruit, meat, fish)

Monopolistic competition

Downward-sloping demand curve but relatively elastic; the firm has some control over price; economic profits possible in short run, but only normal profits in the long run due to freedom of exit and entry

Clothing, footwear, household furniture, fast-food outlets, restaurants, butcheries, plumbers, books, magazines, television repair, used cars, photographic development, filling stations – in some instances location might turn market into oligopoly or even monopoly, particularly as far as services are concerned (eg plumbers, electricians, television repair, supermarkets, hotels, filling stations)

Oligopoly

Downward-sloping demand curve, with elasticity depending on rival firms’ reactions to price changes; the firm has some control over price; economic profits possible in short run and long run due to barriers to entry

Iron and steel, motorcars, tyres, breakfast cereals, banks, cellular phones, cigarettes, cement, petrol, chemical fertilisers, aluminium smelting, golf balls, golf clubs, photographic equipment, beer, soft drinks, car rental service

Monopoly

Downward-sloping demand curve (the market demand curve); the firm has considerable control over price; economic profits possible in short run and long run due to blocked entry

Electricity supply (Eskom), local water supply (Umgeni Water, Rand Water), stainless steel, local monopolies (hotels, bottle stores, universities)

IMPORTANT CONCEPTS

Monopoly Imperfect competition Monopolistic competition Oligopoly Market structure hom*ogeneous (identical) products Heterogeneous (differentiated) products Price takers Price makers (price setters) Barriers to entry Collusion

Demand for the product of the firm Market conduct Natural monopoly Economies of scale Patents Licensing Predatory pricing Total revenue (TR) Average revenue (AR) Marginal revenue (MR) Short run Long run

Total cost (TC) Average cost (AC) Marginal cost (MC) Economic profit Normal profit Economic loss Price discrimination Consumer surplus Product differentiation Non-price competition Interdependence Uncertainty Cartel

CH A P T ER 11 M A R K E T S T RUCT URE 2 : M ONOPOLY AN D I MPERFECT COMPETI TI ON

Kinked demand curve Advertising Allocative efficiency Productive efficiency Deadweight loss X-inefficiency Rent-seeking Countervailing power Regulation Competition policy Mergers

205

Nobel Laureates in economics The Alfred Nobel Memorial Prize for Economic Science was established in 1968 by the Swedish central bank (the Riksbank). Candidates for the Nobel Prize are elected by the Swedish Royal Academy of Sciences. The final choice, from proposals received from various individuals and organisations, is announced in mid-October of each year. The following people were awarded the Nobel Prize for Economics from 1969 to 1990 (with their country of residence in brackets): 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Ragnar Frisch (Norway), Jan Tinbergen (Netherlands) Paul Samuelson (United States) Simon Kuznets (United States) Kenneth Arrow (United States), John Hicks (Britain) Wassily Leontief (United States) Friedrich von Hayek (Britain), Gunnar Myrdal (Sweden) Leonid Kantorovich (Soviet Union), Tjalling Koopmans (United States) Milton Friedman (United States) James Meade (Britain), Bertil Ohlin (Sweden) Herbert Simon (United States) W Arthur Lewis (Britain), Theodore W Schultz (United States) Lawrence R Klein (United States) James Tobin (United States) George J Stigler (United States) Gerard Debreu (United States) Richard Stone (Britain) Franco Modigliani (United States) James M Buchanan Jr (United States) Robert M Solow (United States) Maurice Allais (France) Trygve Haavelmo (Norway) Harry M Markowitz, Merton H Miller, William F Sharpe (United States)

The Nobel Laureates from 1991 to 2014 are listed on page 232.

CHAPTER 1 1 MA RKET STRUCTURE 2: MONOPOLY A ND I MPERFECT CO M P E T I T I ON

factor 12 The markets: the

labour market

Chapter overview 12.1 Introduction 12.2 The labour market versus the goods market 12.3 A perfectly competitive labour market 12.4 Imperfect labour markets 12.5 Wage differentials Appendix 12-1: Other factor markets Important concepts

Labour ... is any painful exertion of mind or body undergone partly or wholly with a view to future good. W STANLEY JEVONS

When a man says he wants to work, what he means is that he wants wages. RICHARD WHATELY

One man’s wage increase is another man’s price increase. HAROLD WILSON

Learning outcomes Once you have studied this chapter you should be able to 䡲 䡲 䡲 䡲 䡲 䡲 䡲

identify the main differences between the labour market and the goods market explain the main determinants of the supply of labour explain how the demand for labour is derived explain how a perfectly competitive labour market functions analyse various labour market imperfections discuss the desirability of minimum wages explain why wages differ

In the previous chapters we analysed different types of goods markets. In this chapter we switch our attention to the market for factors of production (the factor markets) and we examine the labour market, probably the most important factor market. The other factor markets (ie the markets for natural resources or land, capital and entrepreneurship) are dealt with briefly in the appendix to the chapter – the underlying principles tend to be the same in all cases. Labour issues are often in the news. The creation of employment opportunities is an important macroeconomic objective and unemployment is generally regarded as the most important economic problem in South Africa. Increases in wages and salaries are often blamed for increases in costs and prices. Wage disputes and strikes are regularly in the headlines. In this chapter we first explain how the labour market differs from the goods market. The next section focuses on the perfectly competitive labour market. We examine the supply of labour, the demand for labour and wage determination in the labour market. The third section deals with imperfectly competitive labour markets, more specifically with issues such as the impact of trade unions and government inter vention (eg minimum wage fixing). The final section deals briefly with the interesting issue of why wages are not uniform.

207

12.1 Introduction In this chapter we focus on the labour market, arguably the most important factor market in the eco-nomy. To put this market in perspective, we return to the circular flows introduced in Chapter 3. Figure 12-1 shows where the labour market fits in. Households supply their labour in the labour market, where firms purchase the labour by paying wages and salaries. In other words, households supply the labour that is demanded by firms. The price of labour (the wage) is determined by supply and demand. Labour is an important factor of production. The cost of labour is the largest cost factor in the eco-nomy. Changes in the cost of labour therefore have a significant impact on cost and price trends in the economy. The cost of labour depends on the wages and salaries paid to workers and on the productivity of labour. If higher wages and salaries are not matched by increased productivity, the cost of labour, which is usually expressed as labour cost per unit of output, rises. But cost levels are unaffected if productivity rises to the same extent as wages and salaries. It is therefore obvious that the productivity (or quality) of labour is an important determinant of the cost of labour. However, wages and salaries do not represent only costs. They are also an important demand factor in the economy. Wages and salaries are the main source of household income and they therefore influence the demand for goods and services. If all employers pay low wages, they run the risk (in the short run at least) of restricting the total demand for goods and services in the economy. Most economists would agree that the creation of jobs is the most important objective of economic policy in any country. Unemployment is a costly phenomenon. It entails a variety of costs, both to the unemployed and to society at large. To keep unemployment as low as possible, jobs must be created at a sufficient rate. This, in turn, requires a well-disciplined, productive workforce and a steady expansion of aggregate demand. Labour issues are often highly politicised. This is quite understandable, given that these issues involve human beings, their hopes, aspirations and fears. South Africa is no exception. At the height of apartheid, certain jobs were reserved for whites, while a number of further restrictions were placed on black workers. In the 1970s and 1980s trade unions representing mainly black workers played an important role in the political struggle against apartheid. Since the 1990s affirmative action, black economic empowerment and employment equity have been major issues and have had a significant impact on the functioning of the labour market in South Africa. FIGURE 12-1 The interaction between households and firms in the labour market abour mar e D

1

D 1

upply labour ( )

Demand labour (DD)

abour sold o irms

a es and salaries paid o ouse olds

U

D

Households sell their labour to firms, that is, they supply labour (SS) on the labour market. The firms buy the labour, that is, they demand labour (DD). The interaction of supply and demand determines the price of labour, the wage (w1) and the quantity of labour employed (N1).

208

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

12.2 The labour market versus the goods market Like any other market, the labour market is a link between potential sellers (suppliers) and potential purchasers (demanders). Individuals (or households) supply their labour services to firms and the government, who hire these services at a price, called wages and salaries (or wages for short) – see Box 12-1. There are, however, a number of differences between the labour market and other markets (including the markets for other factors of production). Most of these differences relate to the fact that the labour market is concerned with human beings rather than with inanimate objects such as consumer goods, capital goods and natural resources. The following are some of the most important differences: t 8PSLFSTVTVBMMZIBWFUPCFQIZTJDBMMZQSFTFOUXIFOUIFJSTFSWJDFTBSFVTFE"TBSFTVMU non-monetar y factors TVDIBTMPDBUJPOPGFNQMPZNFOUBOEPUIFSXPSLJOHDPOEJUJPOT BSFNPSFJNQPSUBOUJOMBCPVSNBSLFUTUIBOJO NBSLFUTGPSPUIFSGBDUPSTPGQSPEVDUJPO t -BCPVSTFSWJDFTBSFFNCPEJFEJOUIFQFSTPOTDPODFSOFEBOEBSFUIFSFGPSFnot transferableUPPUIFSQFPQMF (PPET JODPOUSBTU BSFGVMMZUSBOTGFSBCMFCf*ckFFOQVSDIBTFSTBOETFMMFST t -BCPVSNBSLFUTEJGGFSGSPNHPPETNBSLFUTJOUIBUMBCPVSJTBMXBZTrented rather than sold"QFSTPODBOSFOU BXPSLFSTTFSWJDFTCVUOPCPEZDBOCVZIJNPSIFS t $POTJEFSBUJPOT PUIFS UIBO NBUFSJBM BEWBOUBHF FOUFS UIF SFMBUJPOTIJQ Cf*ckFFO TVQQMJFST BOE EFNBOEFST 5IJTSFMBUJPOTIJQEPFTOPUJOWPMWFPOMZXBHFTBOEQSPEVDUJWJUZ*UBMTPJOWPMWFTDPOTJEFSBUJPOTPGFRVJUZBOE IVNBOJUZ TVDIBTMPZBMUZ GBJSOFTT BQQSFDJBUJPO BOE KVTUJDF*U NBZ BMTP JOWPMWF CPUI BDUVBM BOE QFSDFJWFE EJTDSJNJOBUJPOPOUIFCBTJTPGHFOEFS SBDF BHFBOENBSJUBMTUBUVT5IFGVODUJPOJOHPGUIFMBCPVSNBSLFUDBO UIFSFGPSFCFBGGFDUFECZBXJEFSBOHFPGnon-economic considerations t -BCPVSNBSLFUTBSFUZQJDBMMZDIBSBDUFSJTFECZtrade unions employees’ associations, collective bargaining BOE government inter vention 5IFTF GFBUVSFT IBWF UP CF UBLFO JOUP BDDPVOU XIFO MBCPVS NBSLFUT BSF BOBMZTFE t -BCPVSJTVTVBMMZFNQMPZFECZNFBOTPGlong-term contracts*ONPTUDBTFTMBCPVSJTUIFSFGPSFOPUUSBEFEBU UIFCFTUQSJDFPOBEBJMZCBTJT

BOX 12-1 SOME BASIC CONCEPTS RELATING TO THE REMUNERATION OF LABOUR The remuneration of labour can take different forms, for example wages, salaries, bonuses, commissions, fees, allowances, royalties, overtime payments and fringe benefits (eg housing subsidies, car allowances, medical and pension fund contributions). Economists usually use the term wage to refer to the basic amount, excluding any benefits or allowances, that is paid in return for the use of labour in production. The price of labour is usually called the wage rate, that is, the amount of money to be paid to a worker for working for a specified period, or for performing a specified number of tasks. A wage rate may, for example, be expressed as R25 an hour, R200 a day, R1 000 a week, R4 000 a month or R48 000 a year. Note that in economic analysis, we do not distinguish between wages (hourly, daily or weekly rates) and salaries (monthly or annual rates), but simply refer to wages or the wage rate. Earnings is a much broader concept which reflects the amounts actually earned by a worker during a specified period, including all bonuses, fringe benefits, and so on. Another important distinction is made between money (or nominal) wages and real wages. The nominal wage is the amount of money actually received by a worker per hour, day, week, month or year. The real wage is the quantity of goods and services that can be purchased with the nominal or money wage. Real wages therefore refer to the purchasing power of money wages. They are determined by the nominal (money) wages and the prices of the goods and services purchased by the workers. For example, when money wages increase by 5 per cent while prices of consumer goods and services increase by 10 per cent, real wages decline by 5 per cent. Similarly, if the increase in nominal wages (say 15 per cent) exceeds the rate of increase in prices (say 10 per cent), then real wages increase (by 5 per cent). In this case the material standard of living of the workers increases (provided that employment and other conditions of service remain unchanged).

CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

209

t -BCPVSJTJOUSJOTJDBMMZheterogeneousBOEVOMJLFHPPETJUDBOOPUCFDMBTTJmFEPSTUBOEBSEJTFE t 5IFSFJTBvariety of labour markets FBDIXJUIJUTPXOGFBUVSFT'PSFYBNQMF UIFSFBSFEJGGFSFOUNBSLFUT GPSEJGGFSFOUPDDVQBUJPOT EJGGFSFOUTLJMMTBOEEJGGFSFOUHFPHSBQIJDBMMPDBUJPOT5IFMBCPVSNBSLFUJTUIFSFGPSF PGUFOEFTDSJCFEBTBsegmented market&BDITFHNFOUIBTJUTPXOQBSUJDVMBSDIBSBDUFSJTUJDTBOEXPSLFST DBOOPU JOUIFTIPSUSVO NPWFGSFFMZCf*ckFFOUIFEJGGFSFOUTFHNFOUT5IFSFDBOUIFSFGPSFTJNVMUBOFPVTMZCF BTIPSUBHFPGMBCPVSJOBDFSUBJOTFHNFOUPGUIFNBSLFUBOEBOPWFSTVQQMZJOBOPUIFSTFHNFOU t 5IFSFNVOFSBUJPOPGMBCPVSEPFTOPUDPOTJTUPOMZPGJUTQSJDF JFUIFXBHF 5IFSFNVOFSBUJPOQBDLBHFNBZ JODMVEFWBSJPVTnon-wage benefits TVDIBTIPVTJOH NFEJDBM QFOTJPO USBWFMBOEIPMJEBZCFOFmUT t 5IFremunerationPGMBCPVSJTaffected byBOVNCFSPGfactorsXIJDIBSFnot directly related to labour market conditions GPS FYBNQMF UBYBUJPO BOE WJFXT BT UP XIBU DPOTUJUVUFT B MJWJOH XBHF PS B SFBTPOBCMF TUBOEBSEPGMJWJOH

12.3 A perfectly competitive labour market Requirements for perfect competition In the case of the goods market we used perfect competition as a benchmark against which the performance of other market structures could be compared. Likewise, we start our analysis of the labour market by examining a perfectly competitive labour market. The requirements for perfect competition in the labour market include the following: t 5IFSFNVTUCFBlarge number of buyers FNQMPZFST BOEBlarge number of sellers FNQMPZFFT JOUIF NBSLFU5IFOVNCFSNVTUCFTPMBSHFUIBUOPJOEJWJEVBMQBSUJDJQBOUDBOJOnVFODFUIFQSJDFPGMBCPVS JFUIF XBHFSBUF *OPUIFSXPSET BMMQBSUJDJQBOUTNVTUCFprice PS JOUIJTDBTF wage takers t -BCPVSNVTUCFhom*ogeneous UIBUJT BMMXPSLFSTNVTUIBWFJEFOUJDBMTLJMMT5IFSFNVTUCFOPSFBTPOGPS FNQMPZFSTUPQSFGFSPOFXPSLFSUPBOPUIFSXPSLFS t 8PSLFST NVTU CF completely mobile NFBOJOH UIBU UIFZ NVTU CF BCMF UP NPWF GSFFMZ GSPN POF FNQMPZFS UP BOPUIFS GSPN POF NBSLFU UP BOPUIFS PS GSPN POF SFHJPO UP BOPUIFS &OUSZ BOE FYJU NVTU UIFSFGPSF CF DPNQMFUFMZGSFF

t "MM QBSUJDJQBOUT NVTU IBWF perfect knowledge PG NBSLFU DPOEJUJPOT 8PSLFST NVTU IBWF GVMM JOGPSNBUJPO PO KPCT BWBJMBCMF BOE XBHF SBUFT XIJMF FBDI FNQMPZFS NVTU IBWF GVMMJOGPSNBUJPOPOXBHFSBUFTQBJECZPUIFSFNQMPZFST t 5IFSFNVTUCFperfect competition in the goods market /PFNQMPZFSNVTUCFBCMFUPQBTTJODSFBTFEMBCPVSDPTUTPO UPDPOTVNFSTJOUIFGPSNPGIJHIFSQSJDFT*OPUIFSXPSET BMM mSNTNVTUCFQSJDFUBLFSTJOUIFHPPETNBSLFU These requirements are very restrictive and it is doubtful whether any labour market actually meets these requirements. Nevertheless, as with perfect competition in the goods market, the notion of a perfectly competitive labour market provides a useful starting point for an analysis of the labour market.

FIGURE 12-2 Equilibrium in a perfectly competitive labour market w D

Wage rate (R per unit)

t 5IFSF NVTU CF no government inter vention JOnVFODJOH FNQMPZFSTPSXPSLFST

E we

S 0

Equilibrium in the labour market

D N

N

Ne Quantity of labour (units per period)

*O B QFSGFDUMZ DPNQFUJUJWF MBCPVS NBSLFU JF B NBSLFU JO XIJDI BMM UIF SFRVJSFNFOUT GPS QFSGFDU DPNQFUJUJPO BSF NFU UIF FRVJMJCSJVN XBHF SBUF BOE UIF FRVJMJCSJVN RVBOUJUZ BSF EFUFSNJOFE CZ UIF JOUFSBDUJPO PG TVQQMZ BOE EFNBOE BT JMMVTUSBUFEJO'JHVSFDDSFQSFTFOUTUIFEFNBOEGPSMBCPVS XIJMF UIF TVQQMZ PG MBCPVS JT JMMVTUSBUFE CZ SS &RVJMJCSJVN PDDVST XIFO UIF RVBOUJUZ PG MBCPVS EFNBOEFE JT FRVBM UP UIF RVBOUJUZ PG MBCPVS TVQQMJFE 5IJT JT JMMVTUSBUFE CZ UIF

210

S

Equilibrium is determined by the interaction of the demand for labour DD and the supply of labour SS. The equilibrium wage rate (ie the price of labour) is we and the equilibrium quantity (ie the level of employment) is Ne.

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

JOUFSTFDUJPOPGUIFEFNBOEDVSWFBOEUIFTVQQMZDVSWF*OQSJODJQMF UIJTJTUIFTBNFBTFRVJMJCSJVNJOBQFSGFDUMZ DPNQFUJUJWFHPPETNBSLFU UIFPOMZEJGGFSFODFCFJOHUIBUXFBSFOPXEFBMJOHXJUIUIFQSJDFPGMBCPVS UIFXBHF SBUFw BOEUIFRVBOUJUZPGMBCPVS(N),JOTUFBEPGUIFQSJDF(P)BOERVBOUJUZ(Q)PGBHPPEPSTFSWJDF *O'JHVSFUIFFRVJMJCSJVNXBHFSBUFJTwFBOEUIFFRVJMJCSJVNRVBOUJUZNF5PBOBMZTFUIFMBCPVSNBSLf*ckF IBWFUPFYBNJOFUIFTVQQMZPGMBCPVSBOEUIFEFNBOEGPSMBCPVS8FTUBSUXJUIUIFJOEJWJEVBMTVQQMZPGMBCPVS

The individual supply of labour Each individual has to decide how to divide his or her time between work and leisure. The quantity of labour supplied (ie the number of working hours offered by a worker) will tend to rise as the wage rate rises, but only up to a certain point. Consider the following example. &SJD#BMPZJIBTUPEFDJEFIPXUPEJWJEFIJTUJNFCf*ckFFOXPSLBOEMFJTVSF)JTDIPJDFJTJMMVTUSBUFEJO'JHVSF "UBOIPVSMZXBHFSBUFPG3PSMFTTIFJTOPUXJMMJOHUPXPSLBUBMM5IJTJTTIPXOCZQPJOUAJOUIFmHVSF 8BHFSBUFTPG3PSMFTTBSFOPUTVGmDJFOUUPDPWFSIJTUSBOTQPSUBOEPUIFSEJSFDUDPTUTPGUBLJOHBKPC BTXFMMBT IJTPQQPSUVOJUZDPTUJOUFSNTPGUIFMFJTVSFIFIBTUPTBDSJmDFCZXPSLJOH)PXFWFS IFJTXJMMJOHUPXPSLBUXBHF SBUFTPGNPSFUIBO3QFSIPVSBOEUIFIJHIFSUIFSBUF UIFMPOHFSIFJTXJMMJOHUPXPSL"UBXBHFSBUFPG3 QFSIPVSIFJTXJMMJOHUPXPSLIPVSTQFSXFFL5IJTJTJOEJDBUFECZQPJOUBJOUIFmHVSF*GIFJTFNQMPZFEGPS IPVSTBU3QFSIPVS IFXJMMFBSOBXFFLMZXBHFPG3 u3 5IJTIFSFHBSETBTCFJOHTVGmDJFOU UPFOKPZBSFBTPOBCMFTUBOEBSEPGMJWJOH XIJDIJODMVEFTIBWJOHFOPVHIMFJTVSFUJNF"UXBHFSBUFTIJHIFSUIBO 3IFDBOTUJMMFBSOBUMFBTU3QFSXFFLCZXPSLJOHGFXFSIPVSTBOEIFXJMMIBWFNPSFUJNFGPSXBUDIJOH 57 HPJOHUPTPDDFSHBNFTPSTPDJBMJTJOHXJUIIJTGSJFOET"UBXBHFSBUFPG3QFSIPVS IFJTXJMMJOHUPXPSL IPVST BTJOEJDBUFECZQPJOUCJOUIFmHVSF*GIFDBOmOEFNQMPZNFOUPOTVDIDPOEJUJPOT JFBXBHFSBUFPG3 QFSIPVSBOEBXPSLJOHXFFLPGIPVST

IFXJMMFBSO3 u3 QFSXFFL)FXJMMUIFSFGPSFFBSOBO BEEJUJPOBM3QFSXFFLandIBWFBOBEEJUJPOBMmWFIPVSTPGMFJTVSFUJNFQFSXFFL 5IFJOEJWJEVBMMBCPVSTVQQMZDVSWFJMMVTUSBUFEJO'JHVSFJTDBMMFEBbackward-bending supply cur ve5IJT GPSNPGUIFTVQQMZDVSWFDBOCFBTDSJCFEUPUXPGPSDFT OBNFMZBsubstitution effectBOEBOincome effect: t Substitution effect. "T UIF XBHF SBUF JODSFBTFT XPSLFST XJMM UFOE UP XPSL NPSF IPVST *O PUIFS XPSET UIFZXJMMCFXJMMJOHUPTBDSJmDFMFJTVSFUPPCUBJOBIJHIFSJODPNF8IBUUIJTSFBMMZNFBOTJTUIBUUIFZXJMMCF XJMMJOHUPTVCTUJUVUFBHSFBUFSDPOTVNQUJPOPGHPPETBOETFSWJDFT XIJDIUIFZXJMMCFBCMFUPBGGPSEXJUIB IJHIFSJODPNF GPSMFJTVSF*ODSFBTFTJOUIFXBHFSBUFSBJTFUIFopportunity costPGMFJTVSFBOEXJMMQSPCBCMZ FOUJDFNPTUXPSLFSTUPTBDSJmDFMFJTVSFBOEUPXPSLMPOHFS UIVTFOBCMJOHUIFNUPQVSDIBTFNPSFHPPETBOE TFSWJDFT5IJTJTUIFsubstitution effectoJODSFBTFTJOUIF QSJDF PG MBCPVS QFSTVBEF XPSLFST UP TVCTUJUVUF XPSL GPS FIGURE 12-3 The individual supply of labour MFJTVSF w Supply curve Wage rate (R/hour)

t Income effect."TBXPSLFSTTQFOEJOHPOHPPETBOETFSWJDFT JODSFBTFT IJT PS IFS NBSHJOBM VUJMJUZ PG DPOTVNQUJPO TFF $IBQUFS EFDSFBTFT.PSFPWFS MFJTVSFJTBOPSNBMHPPE 3FDBMMGSPNFBSMJFSDIBQUFSTUIBUUIFEFNBOEGPSBOPSNBM HPPEJODSFBTFTBTJODPNFJODSFBTFT"TUIFXPSLFSTJODPNF JODSFBTFT BMPOHXJUIUIFXBHFSBUF

IJTPSIFSEFNBOEGPS MFJTVSFXJMMUIVTJODSFBTF5IJTJTUIFincome effect

70 50

C

B

5IF EJSFDUJPO PG UIF TVCTUJUVUJPO FGGFDU BMXBZT EFQFOET PO 10 A UIFDIBOHFJOSFMBUJWFQSJDFT"TUIFQSJDFPGMBCPVSJODSFBTFT N N 0 40 45 relativeUPUIFQSJDFPGMFJTVSF UIFRVBOUJUZPGMBCPVSTVQQMJFE Hours per week XJMM JODSFBTF BOE UIF RVBOUJUZ PG MFJTVSF EFNBOEFE XJMM EFDSFBTF5IFJODPNFFGGFDUXPSLTJOUIFPQQPTJUFEJSFDUJPO "TJODPNFJODSFBTFT NPSFMFJTVSFXJMMCFEFNBOEFEBOEMFTT The quantity of labour supplied increases up to a certain point (B in the figure) and then declines MBCPVSXJMMCFTVQQMJFE'SPNQPJOUAUPQPJOUBJO'JHVSF as the wage rate increases further. This is called UIFTVCTUJUVUJPOFGGFDUJTTUSPOHFSUIBOUIFJODPNFFGGFDUBOE the backward-bending individual supply curve of UIFRVBOUJUZPGMBCPVSTVQQMJFEJODSFBTFT XIJMFUIFRVBOUJUZPG labour. MFJTVSFEFNBOEFEEFDSFBTFT "UBHJWFO CVUJOEFUFSNJOBUF XBHFSBUF IPXFWFS UIFJODPNFFGGFDUCFDPNFTTUSPOHFSUIBO UIF TVCTUJUVUJPO FGGFDU *O 'JHVSF UIJT PDDVST XIFO UIF XBHFSBUFJT3QFSIPVS"UIJHIFSXBHFSBUFTUIFSFXJMMCF NPSFUPHBJOCZXPSLJOHMFTTUIBOCZXPSLJOHNPSF5IFRVBOUJUZPGMFJTVSFEFNBOEFEJODSFBTFTBOEUIFRVBOUJUZ PGMBCPVSTVQQMJFEEFDSFBTFT/PUF IPXFWFS UIBUUIJTTVQQMZDVSWF MJLFBMMPUIFSTVQQMZDVSWFT JOEJDBUFTUIF plansPGUIFJOEJWJEVBMDPODFSOFE5IFSFJTOPHVBSBOUFFUIBU&SJDXJMMHFUBKPCPSFWFSCFPGGFSFEBXBHFPG3 QFSIPVSPSIJHIFS

CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

211

The market supply of labour

FIGURE 12-4 The market supply of labour

t new workersFOUFSUIFNBSLFU FHCFDBVTFUIFQPQVMBUJPO IBTJODSFBTFEPSPOBDDPVOUPGJNNJHSBUJPO

w S

Wage rate (R per unit)

5IFUIFPSZPGUIFCBDLXBSECFOEJOHTVQQMZDVSWFPGMBCPVSJT RVJUFQMBVTJCMFBTGBSBTUIFCFIBWJPVSPGBOJOEJWJEVBMXPSLFS JTDPODFSOFE)PXFWFS BTJOUIFDBTFPGNBOZPUIFSBTQFDUT PG FDPOPNJD MJGF XIBU BQQMJFT UP UIF JOEJWJEVBM EPFT OPU OFDFTTBSJMZBQQMZUPUIFHSPVQPSUPUIFNBSLFU*UJTVOMJLFMZ UIBU BMM JOEJWJEVBM TVQQMZ DVSWFT XJMM CFOE CBDLXBSET BU UIF TBNF XBHFSBUF.PSFPWFS BOJODSFBTFJOUIFXBHF SBUF XJMM JOEVDF NPSF QFPQMF UP FOUFS UIF MBCPVS NBSLFU BOE TVQQMZ UIFJS TFSWJDFT 5IF NBSLFU TVQQMZ PG MBCPVS XJMM UIVT IBWF B QPTJUJWF TMPQF MJLF BOZ OPSNBM TVQQMZ DVSWF JOEJDBUJOH UIBU UIFRVBOUJUZPGMBCPVSTVQQMJFE(N)XJMMJODSFBTFBTUIFXBHF SBUF(w)JODSFBTFT5IJTJTTIPXOJO'JHVSF 5IFNBSLFUTVQQMZPGBQBSUJDVMBSUZQFPGMBCPVSXJMMchange JGBOZPGUIFnon-wageEFUFSNJOBOUTPGUIFTVQQMZPGMBCPVS DIBOHFT 5IJT JT JMMVTUSBUFE CZ B shift PG UIF NBSLFU TVQQMZ DVSWF5IFNBSLFUTVQQMZXJMMDIBOHFJG GPSFYBNQMF

S N N

0 Quantity of labour (units per period)

The quantity of labour supplied (N) increases as the wage rate (w) increases, ceteris paribus. The market supply curve SS thus has a positive slope.

t UIFnumber of workers decreasesBTBSFTVMUPGUIFJNQBDU PG)*7"JET t UIFwagesUIBUDBOCFFBSOFEin other occupationsDIBOHF UIFSFCZNBLJOHUIFQBSUJDVMBSPDDVQBUJPOMFTTPS NPSFBUUSBDUJWF t UIFnon-monetar y aspectsPGUIFPDDVQBUJPODIBOHF FHJGUIFKPCCFDPNFTNPSFQMFBTBOUPSMFTTEBOHFSPVT BTBSFTVMUPGUIFJOUSPEVDUJPOPGOFXTBGFUZNFBTVSFT UIFNBSLFUTVQQMZXJMMUFOEUPJODSFBTFMJLFXJTF JG GSJOHFCFOFmUTMJLFIPMJEBZT UIFEFHSFFPGKPCTFDVSJUZ TUBUVTPSQPXFSDIBOHF UIFNBSLFUTVQQMZXJMMBMTP DIBOHF

An individual firm’s demand for labour 5IFNPTUJNQPSUBOUBTQFDUPGUIFEFNBOEGPSMBCPVSJTUIBUJUJTBderived demand-BCPVSJTOPUEFNBOEFEGPS JUTPXOTBLFCVUSBUIFSGPSUIFWBMVFPGUIFHPPETBOETFSWJDFTUIBUDBOCFQSPEVDFEXIFOMBCPVSJTDPNCJOFE XJUIPUIFSGBDUPSTPGQSPEVDUJPO'JSNTXJMMUIFSFGPSFEFNBOEBOEFNQMPZMBCPVSPOMZJGUIFSFJTBEFNBOEGPS UIFHPPETBOETFSWJDFTQSPEVDFECZMBCPVSandJGJUJTQSPmUBCMFGPSUIFNUPEPTP*OEFDJEJOHXIFUIFSPSOPUUP FNQMPZBXPSLFS PSBOBEEJUJPOBMXPSLFS BmSNXJMMDPNQBSFUIFmarginal benefitEFSJWFEGSPNFNQMPZJOHUIF XPSLFSXJUIUIFmarginal costPGFNQMPZJOHUIFXPSLFS"TMPOHBTUIFNBSHJOBMCFOFmUFYDFFETUIFNBSHJOBM DPTU UIFmSNXJMMDPOUJOVFUPFNQMPZBEEJUJPOBMVOJUTPGMBCPVS5IJTXJMMDPOUJOVFVOUJMUIFNBSHJOBMCFOFmUJT FRVBMUPUIFNBSHJOBMDPTU 5PBOBMZTFUIFJOEJWJEVBMmSNTEFNBOEGPSMBCPVS XFUIVTIBWFUPDPOTJEFSUIFEFUFSNJOBOUTPGUIFNBSHJOBM DPTUPGMBCPVS(MCL)BOEUIFNBSHJOBMCFOFmUPGMBCPVS*OBQFSGFDUMZDPNQFUJUJWFMBCPVSNBSLFU XIJDIJTXIBU XFBSFEFBMJOHXJUIIFSF UIFXBHFSBUFJTEFUFSNJOFEJOUIFMBCPVSNBSLFUCZUIFEFNBOEGPSBOETVQQMZPG MBCPVS BTJMMVTUSBUFEJO'JHVSF*OTVDIBNBSLFU OPJOEJWJEVBMQBSUJDJQBOUDBOJOnVFODFUIFXBHFSBUFoBMM QBSUJDJQBOUTBSFwage takers5IFQPTJUJPOPGBOJOEJWJEVBMmSNJTJMMVTUSBUFEJO'JHVSF"UBOZQBSUJDVMBS UJNFUIFmSNJTGBDFEXJUIBIPSJ[POUBM PSQFSGFDUMZFMBTUJD TVQQMZDVSWF5IJTJOEJDBUFTUIBUUIFmSNDBOFNQMPZ BOZRVBOUJUZPGMBCPVSBUUIFXBHFSBUFEFUFSNJOFEJOUIF QFSGFDUMZDPNQFUJUJWF MBCPVSNBSLFU'JHVSF B JMMVTUSBUFTIPXUIFXBHFSBUFJTEFUFSNJOFEJOUIFNBSLFUBOE'JHVSF C TIPXTUIFQPTJUJPOUIBUDPOGSPOUT UIFJOEJWJEVBMmSN5IFFRVJMJCSJVNXBHFSBUFJTJOEJDBUFEBTwF5IFQFSGFDUMZFMBTUJDTVQQMZPGMBCPVSUPUIFmSN SG BUUIFXBHFSBUFJTBMTPUIFNBSHJOBMDPTUPGMBCPVS(MCL),BTXFMMBTUIFBWFSBHFDPTUPGMBCPVS(ACL),XIJDI JTOPUTIPXOJOUIFmHVSF )PXNVDIMBCPVSXJMMUIFmSNFNQMPZBUUIFHJWFOXBHFSBUF 5PBOTXFSUIJTRVFTUJPO XFIBWFUPFYBNJOF UIFmarginal benefitUPUIFmSNPGFNQMPZJOHBEEJUJPOBMVOJUTPGMBCPVS5If*ckPDPNQPOFOUTPGUIJTCFOFmUBSF UIFphysical productivity of labourBOEUIFmarginal revenue JONPOFUBSZUFSNT UIBUBDDSVFTUPUIFmSN CZTFMMJOHBOBEEJUJPOBMVOJUPGJUTQSPEVDU4JODFXFBSFBTTVNJOHUIBUUIFmSNTFMMTJUTQSPEVDUJOBQFSGFDUMZ DPNQFUJUJWFQSPEVDUNBSLFU UIFmSNTNBSHJOBMSFWFOVFJTFRVBMUPUIFprice of the product BTXFFYQMBJOFE

212

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

FIGURE 12-5 A perfectly competitive labour market (b) The firm

(a) The market w

w

Wage rate (R per unit)

D

S

we

we

Sf = MCL = we

D

S

N

0 Quantity of labour (units per period)

N

N

Quantity of labour (units per period)

The perfectly competitive labour market is illustrated in (a). In this market the equilibrium wage rate (we) is determined by the interaction between the demand for labour DD and the supply for labour SS. The position of the individual firm is illustrated in (b). The firm can employ any quantity of labour at the equilibrium wage rate. The supply of labour to the firm (Sf) is thus represented by a horizontal line at the level of the equilibrium wage rate. This also represents the marginal cost of labour (MCL) to the firm.

JO$IBQUFS 5IFmSNXJMMDPOUJOVFUPFNQMPZMBCPVSBTMPOHBTUIFFNQMPZNFOUPGFBDIBEEJUJPOBMVOJUBEET NPSFUPJUTUPUBMSFWFOVFUIBOUPJUTUPUBMDPTU JFBTMPOHBTNBSHJOBMCFOFmUFYDFFETNBSHJOBMDPTU 8FOPX DPOTJEFSUIf*ckPDPNQPOFOUTPGUIFNBSHJOBMCFOFmUHBJOFECZFNQMPZJOHMBCPVS 3FDBMM GSPN $IBQUFS UIBU UIF law of diminishing returns JNQMJFT UIBU UIF marginal product of labour IBTBEFDMJOJOHUFOEFODZ"TNPSFVOJUTPGUIFWBSJBCMFGBDUPSPGQSPEVDUJPOoMBCPVSoBSFBEEFEUPUIFmYFE RVBOUJUJFTPGUIFPUIFSGBDUPST OBUVSBMSFTPVSDFT DBQJUBMBOEFOUSFQSFOFVSTIJQ

UIFBEEJUJPOBMPVUQVUHFOFSBUFE CZUIFFNQMPZNFOUPGFBDIBEEJUJPOBMVOJUPGMBCPVSEFDSFBTFT5IFNBSHJOBMQSPEVDUPGMBCPVSNBZJODSFBTF JOJUJBMMZ CVUGSPNBDFSUBJOQPJOUEJNJOJTIJOHSFUVSOTTUBSUUPTFUJOBOENBSHJOBMQSPEVDUTUBSUTUPEFDMJOF'PSUIF QVSQPTFTPGPVSEJTDVTTJPOXFJHOPSFUIFSJTJOHQBSUPGUIFNBSHJOBMQSPEVDUPGMBCPVSBOEGPDVTPOUIFEFDMJOJOH QBSU POMZ .PSFPWFS XF SFGFS UP UIF NBSHJOBM QSPEVDU PG MBCPVS BT UIF NBSHJOBM physical QSPEVDU PG MBCPVS MPP ,UPEJTUJOHVJTIJUGSPNUIFNBSHJOBMrevenueQSPEVDU XIJDIJTFYQSFTTFEJONPOFUBSZUFSNT 5IFMPPJOEJDBUFTUIFQIZTJDBMWBMVFUPUIFmSNPGFNQMPZJOHBOBEEJUJPOBMVOJUPGMBCPVS5PEFUFSNJOFUIF JODSFBTFJOUPUBMrevenuePGUIFmSN JONPOFUBSZUFSNT BTBSFTVMUPGUIFFNQMPZNFOUPGBOBEEJUJPOBMVOJUPG MBCPVS UIFQIZTJDBMWBMVF MPP IBTUPCFNVMUJQMJFECZUIFNBSHJOBMSFWFOVF MR UIBUBDDSVFTUPUIFmSNCZ TFMMJOHBOBEEJUJPOBMVOJUPGUIFHPPEPSTFSWJDFUIBUJUQSPEVDFT5IJTJTDBMMFEUIFmarginal revenue product MRP .5IVT MRPMPPuMRù

'PSBQFSGFDUMZDPNQFUJUJWFmSN NBSHJOBMSFWFOVF MR JTFRVBMUPUIFQSJDF P PGUIFQSPEVDU'PSTVDIBmSN NBSHJOBMSFWFOVFQSPEVDU MRP JTUIFSFGPSFFRVBMUPNBSHJOBMQIZTJDBMQSPEVDU MPP NVMUJQMJFECZUIFQSJDF PGUIFQSPEVDU P .5IVT MRPMPPuPù

See also Box 12-2. 5PEFUFSNJOFXIFUIFSPSOPUJUXJMMCFQSPmUBCMFUPFNQMPZBOBEEJUJPOBMVOJUPGMBCPVS UIFNBSHJOBMCFOFmUUP UIFmSN JFMRP IBTUPCFDPNQBSFEUPUIFNBSHJOBMDPTUPGMBCPVS JFUIFXBHFSBUF "TMPOHBTMRPJTHSFBUFS UIBOUIFXBHFSBUF w ,UIBUJT BTMPOHBTFBDIBEEJUJPOBMXPSLFSTDPOUSJCVUJPOUPUIFmSNTSFWFOVFJTHSFBUFS UIBOUIFDPTUPGIJSJOHIJNPSIFS JUXJMMCFQSPmUBCMFUPFYQBOEFNQMPZNFOU0OUIFPUIFSIBOE XIFOMRPJT MFTTUIBOUIFXBHFSBUF NBSHJOBMDPTUFYDFFETNBSHJOBMCFOFmUBOEJUXJMMUIFSFGPSFOPUCFQSPmUBCMFUPFNQMPZ NPSFXPSLFSToMPTTFTXJMMCFJODVSSFEBTBSFTVMUPGUIFFNQMPZNFOUPGFBDIBEEJUJPOBMXPSLFS&RVJMJCSJVN JF

CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

213

NBYJNVNQSPmU JTBDIJFWFEXIFOMRPJTFRVBMUPUIFXBHFSBUF w

UIBUJT XIFOmarginal benefitJTFRVBMUP marginal cost5IVT GPSFRVJMJCSJVN MRP = w

8F OPX VTF B OVNFSJDBM FYBNQMF UP JMMVTUSBUF UIFTF QPJOUT $POTJEFS UIF JOGPSNBUJPO JO 5BCMF 5IF mSTU DPMVNOHJWFTUIFOVNCFSPGXPSLFSTBOEUIFTFDPOEDPMVNOTIPXTUIFUPUBMQSPEVDU OVNCFSPGTIJSUT UIBUDBO CFQSPEVDFECZUIBUOVNCFSPGXPSLFST BTTVNJOHUIBUUIFRVBOUJUJFTPGBMMPUIFSGBDUPSTPGQSPEVDUJPOSFNBJO DPOTUBOU 5IF UIJSE DPMVNO TIPXT UIF NBSHJOBM QIZTJDBM QSPEVDU PG MBCPVS UIBU JT UIF BEEJUJPOBM OVNCFS PG TIJSUTUIBUDBOCFQSPEVDFECZIJSJOHFBDIBEEJUJPOBMXPSLFS5IFOFYUDPMVNOHJWFTUIFQSJDFPGTIJSUT 3QFS TIJSU 5IFmGUIDPMVNOTIPXTUIFNBSHJOBMSFWFOVFQSPEVDU MRP PGMBCPVS5IJTJTPCUBJOFECZNVMUJQMZJOH UIFNBSHJOBMQIZTJDBMQSPEVDU MPP CZUIFQSJDFPGBTIJSU "MUFSOBUJWFMZ UIFUPUBMQSPEVDUoTFDPOEDPMVNOo DBOCFNVMUJQMJFECZUIFQSJDFPGBTIJSUUPPCUBJOUPUBMSFWFOVF5IFMRPDBOUIFOCFEFSJWFECZDBMDVMBUJOHUIF BEEJUJPOUPUPUBMSFWFOVFBTBSFTVMUPGFNQMPZJOHFBDIBEEJUJPOBMXPSLFS

TABLE 12-1 Calculation of the marginal revenue product of labour: an example Marginal physical product (number of shirts per week) MPP

Price per shirt (R)

N

Total physical product (number of shirts per week)

P

Marginal revenue product (R per week) MRP

0 1 2 3 4 5

0 10 18 24 28 30

0 10 8 6 4 2

50 50 50 50 50 50

0 500 400 300 200 100

Number of workers

BOX 12-2 IMPERFECT COMPETITION IN THE PRODUCT MARKET AND THE DEMAND FOR LABOUR Although the analysis of the demand for labour remains fundamentally unchanged if we relax the assumption of perfect competition in the goods market, one difference should be noted. With imperfect goods markets there are two reasons why marginal revenue product (MRP) declines as employment expands beyond a certain point. As in the case of perfect competition, diminishing returns will set in but, in addition, a firm faced with a downward-sloping demand curve for its product also has to reduce the price of all units in order to increase sales (ie in the absence of price discrimination). Thus, when a firm sells its product in an imperfect market, both elements of the MRP of labour (ie the marginal physical product MPP and the price of the product P) can vary. Because P falls as output increases, the MRP will (ceteris paribus) fall more rapidly for firms operating in imperfect goods markets than for those engaged in perfect competition. To differentiate between the two cases, a distinction is sometimes made between the marginal revenue product (MRP) and the value marginal product (VMP, short for value of the marginal product) where the former is equal to the marginal physical product multiplied by the marginal revenue of the product in question (ie MRP = MPP u MR), while the value marginal product is equal to the marginal physical product multiplied by the price of the product (ie VMP = MPP u P). In perfectly competitive goods markets marginal revenue (MR) is equal to price (P), therefore MRP = VMP. However, in the case of imperfect competition MR will be lower than P (since prices have to be lowered to increase sales volumes) and therefore MRP will be lower than VMP. Graphically, the MRP curve will be steeper than (or lie inside) the VMP curve. As a result, fewer workers will be employed (ceteris paribus) at any given wage by a firm operating in an imperfect goods market than by a firm that is subject to perfect competition in the goods market. In the main text we ignore the difference between MRP and VMP and refer only to MRP, which is the broader concept.

214

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

4VQQPTFUIFXBHFSBUF w JT3QFSXFFL5IFmSNXJMMUIFONBYJNJTFQSPmUTCZFNQMPZJOHBNBYJNVNPG GPVSXPSLFST*GUIFmSNFNQMPZTGFXFSXPSLFST UIFMRPXJMMCFHSFBUFSUIBOUIFXBHFSBUF5IJTNFBOTUIBU UIFmSNDBOJODSFBTFJUTQSPmUTCZFNQMPZJOHBEEJUJPOBMXPSLFST.BYJNVNQSPmUJTBDIJFWFEXIFOMRPXBHF SBUF*GUIFmSNFNQMPZTmWFXPSLFST UIFMRPPG3XJMMCFMFTTUIBOUIFDPTUPGUIFmGUIXPSLFS JF3 *U JTUIFSFGPSFOPUQSPmUBCMFUPFNQMPZmWFXPSLFST "U EJGGFSFOU XBHF SBUFT UIF RVBOUJUZ PG MBCPVS EFNBOEFE DBO CF EFSJWFE JO B TJNJMBS GBTIJPO 5IF mSN JO PVS FYBNQMFXJMMFNQMPZBNBYJNVNPGUXPXPSLFSTJGUIFXBHFSBUFJT3 UISFFXPSLFSTXIFOUIFXBHFSBUFJT3 BOETPPO5IFEFSJWFEEFNBOEDVSWFGPSMBCPVSJTUIFOHJWFOCZUIFNBSHJOBMSFWFOVFQSPEVDU BTJO'JHVSF 5IFFRVJMJCSJVNQPTJUJPOPGBOJOEJWJEVBMmSNPQFSBUJOHJOBQFSGFDUMZDPNQFUJUJWFMBCPVSNBSLFUJTJMMVTUSBUFE JO'JHVSF5IFmSNTEFNBOEGPSMBCPVSJTHJWFOCZUIFNBSHJOBMSFWFOVFQSPEVDUPGMBCPVS MRP XIJDI TMPQFTEPXOXBSEBTBSFTVMUPGEJNJOJTIJOHSFUVSOTUPMBCPVS5IFTVQQMZDVSWFGBDJOHUIFmSNJTIPSJ[POUBMBU UIFMFWFMPGUIFXBHFSBUF EFUFSNJOFEJOUIFMBCPVSNBSLFU &RVJMJCSJVNJTSFBDIFEXIFSFMRP UIFNBSHJOBM CFOFmUPGFNQMPZJOHMBCPVS JTFRVBMUPw UIFNBSHJOBMDPTUPGFNQMPZJOHMBCPVS 5IJTPDDVSTBUBOFNQMPZNFOU MFWFMPGNF

The market demand for labour 5IFNBSLFUEFNBOEGPSBQBSUJDVMBSUZQFPGMBCPVS XIJDIJTBTTVNFEUPCFIPNPHFOFPVT JTPCUBJOFECZBEEJOH BMMUIFJOEJWJEVBMmSNTEFNBOEDVSWFT*UXJMMUIFSFGPSFBMTPIBWFBOFHBUJWFTMPQF5IFNBSLFUEFNBOEDVSWF XBTJMMVTUSBUFEBTDDJO'JHVSF 5IF NBSLFU EFNBOE GPS B QBSUJDVMBS UZQF PG MBCPVS XJMM DIBOHF JG BOZ PG UIFnon-wage EFUFSNJOBOUT PG UIF RVBOUJUZ PG MBCPVS EFNBOEFE DIBOHFT 5IJT JT JMMVTUSBUFE CZ B shift PG UIF NBSLFU EFNBOE DVSWF 5IF NBSLFU EFNBOEXJMMDIBOHF GPSFYBNQMF JG t UIFnumber of firms FNQMPZFST DIBOHFT t UIFprice of the productDIBOHFToBDIBOHFJOUIFQSJDFPGUIFQSPEVDU FHBTBSFTVMUPGBDIBOHFJOdemand XJMMDIBOHFUIFNBSHJOBMSFWFOVFQSPEVDUMRPBOEUIFSFGPSFBMTPUIFRVBOUJUZPGMBCPVSEFNBOEFEBUFBDI XBHFSBUF SFNFNCFSUIBUMRP = MPPuPUIVTJGPDIBOHFT MRPXJMMBMTPDIBOHF ceteris paribus

t UIFNBSHJOBMQIZTJDBMQSPEVDUMPP PSproductivity PGMBCPVSDIBOHFT TJODFUIJTXJMMDIBOHFMRP ceteris paribus

FIGURE 12-6 The individual firm’s demand for labour

w

D 500

Wage rate (R per unit)

Marginal revenue product, wage rate

MRP, w (R)

FIGURE 12-7 The equilibrium position of a firm operating in a perfectly competitive labour market

400 300 200

MCL = w = supply of labour

we

100 D 0

1

4 5 2 3 Number of workers

0 N

N

The demand curve for labour DD is given by the marginal revenue product of labour (MRP). It slopes downwards from left to right like a normal demand curve for a product.

CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

Ne

MRP = demand for labour N

Quantity of labour (units per period)

The firm is in equilibrium where MRP, which represents the firm’s demand for labour, is equal to the wage rate we, which represents the supply of labour to the firm. This occurs at an employment level of Ne.

215

t Bnew substitute for labourCFDPNFTBWBJMBCMFoGPSFYBNQMF UIFJOUSPEVDUJPOPGBVUPNBUFEUFMMFSNBDIJOFT "5.T SFTVMUFEJOBEFDSFBTFJOUIFEFNBOEGPSCBOLUFMMFST ceteris paribus t UIF price of a substitute factor of production DIBOHFT o GPS FYBNQMF JG UIF QSJDF PG NBDIJOFSZ DBQJUBM EFDSFBTFT UIFRVBOUJUZPGMBCPVSEFNBOEFEXJMMUFOEUPEFDSFBTF BTFNQMPZFSTSFQMBDFXPSLFSTXJUI NBDIJOFT t UIFprice of a complementar y factor of productionDIBOHFToGPSFYBNQMF JGUIFQSJDFPGUSVDLTEFDSFBTFT BOEUIFRVBOUJUZPGUSVDLTJODSFBTFT UIFOVNCFSPGUSVDLESJWFSTEFNBOEFEXJMMBMTPJODSFBTF &BDIPGUIFTFDIBOHFTDBOCFJMMVTUSBUFECZBshiftPGUIFNBSLFUEFNBOEDVSWF

Changes in labour market equilibrium "DIBOHFJOBOZPGUIFOPOXBHFEFUFSNJOBOUTPGUIFEFNBOEGPSPSTVQQMZPGMBCPVSXJMMHJWFSJTFUPBTIJGUPG UIF EFNBOE DVSWF PS UIF TVQQMZ DVSWF BT JMMVTUSBUFE JO 'JHVSF 'JHVSF B EFQJDUT BO JODSFBTF JO UIF EFNBOEGPSMBCPVS FHBTBSFTVMUPGBOJODSFBTFJOUIFEFNBOEGPSUIFQSPEVDUJORVFTUJPO JMMVTUSBUFECZBTIJGU PGUIFEFNBOEDVSWFGSPNDDUPDD *OBQFSGFDUMZDPNQFUJUJWFMBCPVSNBSLFU UIFXBHFSBUFBOEUIFMFWFMPG FNQMPZNFOUXJMMBEKVTUJNNFEJBUFMZ UPwBOENSFTQFDUJWFMZ'JHVSF C EFQJDUTBEFDSFBTFJOUIFEFNBOE GPSMBCPVS FHBTBSFTVMUPGUIFTVCTUJUVUJPOPGMBCPVSCZDBQJUBM JMMVTUSBUFECZBTIJGUPGUIFEFNBOEDVSWFGSPN DDUPDD *OBQFSGFDUMZDPNQFUJUJWFMBCPVSNBSLFUUIJTXJMMJNNFEJBUFMZSFTVMUJOBEFDSFBTFJOCPUIUIF XBHFSBUF UPw BOEUIFMFWFMPGFNQMPZNFOU UPN -JLFXJTF 'JHVSFT D BOE E JMMVTUSBUFBOJODSFBTFJO UIFTVQQMZPGMBCPVS FHBTBSFTVMUPGOFXFOUSBOUTUPUIFMBCPVSNBSLFU BOEBEFDSFBTFJOUIFTVQQMZPGMBCPVS FHBTBSFTVMUPGBEFDMJOFJOUIFSFMBUJWFBUUSBDUJWFOFTTPGUIFQBSUJDVMBSUZQFPGKPC *OBMMUIFTFDBTFT UIFmagnitudePGUIFDIBOHFTJOUIFXBHFSBUFBOEUIFMFWFMPGFNQMPZNFOUXJMMEFQFOEPO UIF elasticitiesPGEFNBOEBOETVQQMZ'PSFYBNQMF JGUIFEFNBOEGPSMBCPVSEFDSFBTFT UIFJNQBDUXJMMEFQFOE POUIFFMBTUJDJUZPGUIFTVQQMZPGMBCPVS5IFNPSFJOFMBTUJDUIFTVQQMZPGMBCPVS UIFHSFBUFSUIFJNQBDUPOUIF XBHFSBUFBOEUIFTNBMMFSUIFJNQBDUPOUIFMFWFMPGFNQMPZNFOUXJMMCF-JLFXJTF UIFJNQBDUPGBDIBOHFJOUIF TVQQMZPGMBCPVSXJMMEFQFOEPOUIFFMBTUJDJUZPGUIFEFNBOEGPSMBCPVS *O'JHVSFJUJTBTTVNFEUIBUUIFMBCPVSNBSLFUBEKVTUTGVMMZBOEJOTUBOUBOFPVTMZUPDIBOHFTJOEFNBOEPS TVQQMZ*OPUIFSXPSET UIFMBCPVSNBSLFUJTDPNQMFUFMZflexible*OQSBDUJDF IPXFWFS BEKVTUNFOUUBLFTUJNFBOE BMTPOFFEOPUCFDPNQMFUF*OGBDU NPTUMBCPVSNBSLFUTBSFJNQFSGFDUNBSLFUTDIBSBDUFSJTFECZWBSJPVTSJHJEJUJFT BOEEFWJBUJPOTGSPNUIFQFSGFDUMZDPNQFUJUJWFNPEFM*OUIFOFYUTFDUJPOXFFYBNJOFTPNFPGUIFJNQFSGFDUJPOT BOEUIFJSJNQMJDBUJPOT

12.4 Imperfect labour markets In Chapters 10 and 11 we saw that most goods markets are not characterised by perfect competition. Likewise, most labour markets are not characterised by perfect competition. We do not live in a world of perfect information, or in a world with perfectly competitive input and output markets. In this section we examine some of the reasons why labour markets tend to be imperfect, and we analyse some of these imperfections. Some of the reasons that labour markets may be imperfect are the following: t 8PSLFSTJOBQBSUJDVMBSNBSLFUBSFPSHBOJTFEJOBtrade unionXIJDIUIFOBDUTBTBmonopolistic supplierPG MBCPVS t 5IFSF JT only one buyer PG MBCPVS JF POMZ POF NBKPS FNQMPZFS PS FNQMPZFS PSHBOJTBUJPO JO B QBSUJDVMBS NBSLFU5IJTJTDBMMFEBmonopsony t -BCPVSJTheterogeneous OPUIPNPHFOFPVT BOEFBDIXPSLFS PSHSPVQPGXPSLFST IBTQBSUJDVMBSBCJMJUJFT BUUSJCVUFT FEVDBUJPO USBJOJOHPSFYQFSJFODFUIBUEJGGFSFOUJBUFTIJNPSIFSGSPNPUIFSXPSLFST t -BCPVS JT not completely mobile JO UIF TFOTF UIBU XPSLFST DBOOPU NPWF GSFFMZ GSPN POF PDDVQBUJPO UP BOPUIFS GSPN POF FNQMPZFS UP BOPUIFS PS GSPN POF SFHJPO UP BOPUIFS 5IF MBCPVS NBSLFU JT B segmented marketBOEXPSLFSTPGUFODBOOPUNPWFGSFFMZCf*ckFFOUIFEJGGFSFOUTFHNFOUT t Government inter venesJOUIFMBCPVSNBSLFUCZMFHJTMBUJOHDPOEJUJPOTPGFNQMPZNFOU NJOJNVNXBHFTBOE TPPO(PWFSONFOUJTBMTPUIFMBSHFTUFNQMPZFSJOUIFFDPOPNZBOEJUTBDUJPOTJOWBSJBCMZBGGFDUUIFSFTUPGUIF MBCPVSNBSLFU t &NQMPZFSTBOEFNQMPZFFTIBWFimperfect knowledge JOGPSNBUJPO BCPVUNBSLFUDPOEJUJPOT FHXPSLFST BSFPGUFOVOBXBSFPGKPCTUIBUBSFBWBJMBCMF We now examine some of these market imperfections.

216

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

FIGURE 12-8 Changes in labour market equilibrium

In all cases the initial equilibrium is illustrated by the intersection of the demand curve (D0D0) and the supply curve (S0S0). The equilibrium wage rate is w0 and the equilibrium level of employment N0. In (a) the demand for labour increases, illustrated by a rightward shift of the demand curve to D1D1. The wage rate increases to w1 and the level of employment to N1. In (b) the demand for labour decreases, illustrated by a leftward shift of the demand curve to D2D2. The equilibrium wage rate and employment level fall to w2 and N2 respectively. In (c) the supply of labour increases, illustrated by a rightward shift of the supply curve to S3S3. The wage rate falls to w3 but the level of employment increases to N3. In (d) the supply of labour decreases, illustrated by a leftward shift of the supply curve to S4S4. The wage rate increases to w4 but the level of employment falls to N4.

Trade unions 0OFPGUIFSFRVJSFNFOUTGPSQFSGFDUDPNQFUJUJPOJOUIFMBCPVSNBSLFUJTBMBSHFOVNCFSPGJOEFQFOEFOUTVQQMJFSTPG MBCPVS)PXFWFS JOEJWJEVBMXPSLFST QBSUJDVMBSMZVOTLJMMFEPOFT BSFVTVBMMZBUBEJTBEWBOUBHFXIFOOFHPUJBUJOH XJUIFNQMPZFST5IFFNQMPZFSEFDJEFTXIFUIFSPSOPUUPFNQMPZUIFXPSLFSBOEBMTPEFUFSNJOFTUIFDPOEJUJPOT PGFNQMPZNFOU6OMFTTUIFXPSLFSIBTTPNFTQFDJBMTLJMMTPSPUIFSBUUSJCVUFT PSVOMFTTMBCPVSJTJOTIPSUTVQQMZ IFPSTIFXJMMIBWFMJUUMFPSOPJOEJWJEVBMCBSHBJOJOHQPXFS8PSLFSTUIFSFGPSFPGUFOCBOEUPHFUIFSUPGPSNUSBEF VOJPOTPSPUIFSFNQMPZFFTPSHBOJTBUJPOTUPQVSTVFDFSUBJODPNNPOBJNTBOEUPTFSWFBTBcounter vailing force UPUIFCBSHBJOJOHQPXFSPGFNQMPZFST8BHFTBOEPUIFSDPOEJUJPOTPGTFSWJDFBSFUIFOOFHPUJBUFEPOBDPMMFDUJWF CBTJTCf*ckFFOFNQMPZFFTBOEFNQMPZFST8IFONBUUFSTDBOOPUCFTFUUMFEUISPVHITVDIcollective bargaining EJTQVUFTBSFSFGFSSFEGPSNFEJBUJPOPSBSCJUSBUJPOCZBUIJSEQBSUZ PSUIFXPSLFSTNBZHPPOTUSJLFJOBOBUUFNQU UPFOGPSDFUIFJSEFNBOET The economic effects of trade unions are hotly debated. Do trade unions raise wages? Do they cause inflation? Do they increase or decrease economic efficiency? Do they make the distribution of income more equal or less

CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

217

equal? Do they cause unemployment? Economists and other observers differ on these issues. Some argue that trade unions raise wages at the cost of increased unemployment. It is often claimed, for example, that trade union pressure for higher wages has caused certain workers to be priced out of the market and replaced by machines. Some observers also argue that unions cause so much “hassle” that employers prefer to replace people with machines, which cannot go on strike or disrupt the production process in other ways. $PMMFDUJWFCBSHBJOJOHJTOPUDPODFSOFEPOMZXJUIXBHFT*UDPWFSTBWBSJFUZPGJTTVFT JODMVEJOHNBUUFSTTVDI BTIPVSTPGXPSL KPCTFDVSJUZ PWFSUJNF GSJOHFCFOFmUT KPCFWBMVBUJPOBOEQSPDFEVSFTGPSTFUUMJOHHSJFWBODFT *OUIJTTVCTFDUJPO IPXFWFS XFSFTUSJDUPVSTFMWFTUPBOFYBNJOBUJPOPGUIFQPTTJCMFJNQBDUPGUSBEFVOJPOTPO XBHFTBOEFNQMPZNFOU 5IFSFBSf*ckPCSPBEDBUFHPSJFTPGUSBEFVOJPOTDSBGUVOJPOTBOEJOEVTUSJBMVOJPOT"craft unionDPOTJTUTPG XPSLFSTXJUIBDPNNPOTFUPGTLJMMT FHQMVNCFST FMFDUSJDJBOT QSJOUFST XIPBSFKPJOFEUPHFUIFSJOBDPNNPO BTTPDJBUJPO JSSFTQFDUJWFPGXIFSF PSGPSXIPN UIFZXPSL4PVUI"GSJDBOFYBNQMFTJODMVEFUIF"JSMJOF1JMPUT "TTPDJBUJPO PG 4PVUI "GSJDB "-1"4"

UIF +FXFMMFST BOE (PMETNJUIT 6OJPO + (6

UIF 4PVUI "GSJDBO %FNPDSBUJD5FBDIFST6OJPO 4BEUV BOEUIF4PVUI"GSJDBO'PPUCBMM1MBZFST6OJPO 4BGQV 1SPGFTTJPOBMCPEJFT FHJOUIFNFEJDBM MFHBM FOHJOFFSJOHPSBDDPVOUJOHQSPGFTTJPOT PQFSBUFBMPOHTJNJMBSMJOFT4VDIVOJPOTDBO DPOUSPMUIFTVQQMZPGTLJMMFEMBCPVSJOQBSUJDVMBSUSBEFTPSQSPGFTTJPOT FHCZSFTUSJDUJOHNFNCFSTIJQ DPOUSPMMJOH UIFMFOHUIPGUSBJOJOHPSBQQSFOUJDFTIJQQSPHSBNNFTPSSBJTJOHTUBOEBSETGPSFOUSZ 5IJTJTJMMVTUSBUFEJO'JHVSF B 5IFPSJHJOBMEFNBOEBOETVQQMZBSFSFQSFTFOUFECZDDBOESSSFTQFDUJWFMZ5IFPSJHJOBMFRVJMJCSJVN XBHFSBUFJTwBOEUIFMFWFMPGFNQMPZNFOUN*GUIFVOJPOTVDDFFETJOSFEVDJOHUIFTVQQMZPGTLJMMT JMMVTUSBUFE CZBMFGUXBSETIJGUPGUIFTVQQMZDVSWFUPSS

UIFXBHFSBUFJODSFBTFTUPwBOEUIFMFWFMPGFNQMPZNFOUGBMMT UPN5IFJNQBDUPGUIFTIJGUJOTVQQMZXJMMEFQFOE ceteris paribus POUIFFMBTUJDJUZPGEFNBOE5IFHSFBUFSUIF FMBTUJDJUZPGEFNBOE UIFMBSHFSUIFESPQJOFNQMPZNFOUXJMMCF "Oindustrial unionUSJFTUPPSHBOJTFBMMXPSLFST CPUITLJMMFEBOEVOTLJMMFE JOBQBSUJDVMBSJOEVTUSZJOBTJOHMF CBSHBJOJOHVOJU*ODPOUSBTUUPBDSBGUVOJPO JUEPFTOPUSFTUSJDUJUTNFNCFSTIJQUPXPSLFSTXJUIQBSUJDVMBSTLJMMT PSRVBMJmDBUJPOT4PVUI"GSJDBOFYBNQMFTJODMVEFUIF/BUJPOBM6OJPOPG.FUBMXPSLFSTPG4PVUI"GSJDB /VNTB

UIF1PMJDFBOE1SJTPOT$JWJM3JHIUT6OJPO 1PQDSV

UIF4PVUIFSO"GSJDBO$MPUIJOHBOE5FYUJMF8PSLFST6OJPO 4BDUXV

UIF"TTPDJBUJPOPG.JOFXPSLFSTBOE$POTUSVDUJPO6OJPO "NDV

UIF4PVUI"GSJDBO.VOJDJQBM8PSLFST 6OJPO 4BNXV BOEUIF/BUJPOBM6OJPOPG.JOFXPSLFST /6. 5IFVMUJNBUFBJNPGBOJOEVTUSJBMVOJPOJTUP BDIJFWFDPNQMFUFDPOUSPMPWFSUIFMBCPVSTVQQMZJOBQBSUJDVMBSJOEVTUSZ UIFSFCZGPSDJOHmSNTJOUIFJOEVTUSZUP CBSHBJOFYDMVTJWFMZXJUIJUPWFSXBHFTBOEPUIFSDPOEJUJPOTPGFNQMPZNFOU"MUIPVHIUIJTBJNJTTFMEPN JGFWFS BDIJFWFEJOQSBDUJDF QPXFSGVMJOEVTUSJBMVOJPOTIBWFTJHOJmDBOUCBSHBJOJOHQPXFSBOEDBOTFWFSFMZEJTSVQUmSNT PSJOEVTUSJFTUISPVHITUSJLFBDUJPO *ODPOUSBTUUPDSBGUVOJPOT JOEVTUSJBMVOJPOTVTFUIFJSCBSHBJOJOHQPXFSEJSFDUMZUPJODSFBTFXBHFSBUFT5IJTJT JMMVTUSBUFEJO'JHVSF C 0ODFBHBJODDBOESSSFQSFTFOUUIFPSJHJOBMEFNBOEBOETVQQMZPGMBCPVS5IF FRVJMJCSJVNXBHFSBUFJTwBOEUIFFRVJMJCSJVNMFWFMPGFNQMPZNFOUN4VQQPTFUIFVOJPO XIJDISFQSFTFOUTBMM UIFXPSLFSTJOUIFJOEVTUSZ TVDDFFET FHUISPVHITUSJLFBDUJPOPSUIFUISFBUPGTVDIBDUJPO UPSBJTFUIFXBHF SBUFUPw5IFFGGFDUJWFMBCPVSTVQQMZOPXCFDPNFTwaS JMMVTUSBUFECZUIFUIJDLMJOFJOUIFmHVSF 5IFMFWFM PGFNQMPZNFOUXJMMGBMMUPNCVUUIFIJHIFSXBHFSBUFXJMMQFSTJTUBTMPOHBTUIFVOJPODBOQSFWFOUPUIFS OPO VOJPO XPSLFSTGSPNBDDFQUJOHFNQMPZNFOUBUMPXFSXBHFSBUFT0ODFBHBJOUIFJNQBDUPOFNQMPZNFOUXJMM EFQFOEPOUIFFMBTUJDJUZPGUIFEFNBOEGPSMBCPVS0UIFSGBDUPSTUIBUBGGFDUUIFCBSHBJOJOHQPTJUJPOPGUIFVOJPO BSFEJTDVTTFEMBUFSJOUIFTVCTFDUJPOPOCJMBUFSBMNPOPQPMZ 6OJPOTDBOBMTPBUUFNQUUPSBJTFXBHFT BOEFNQMPZNFOU CZUSZJOHUPJODSFBTFUIFEFNBOEGPSMBCPVSJOB QBSUJDVMBSJOEVTUSZ5IJTJTJMMVTUSBUFEJO'JHVSF D 5IFJOJUJBMFRVJMJCSJVNJTTJNJMBSUPUIFJOJUJBMFRVJMJCSJB JO 'JHVSFT B BOE C *GUIFEFNBOEGPSMBCPVS JODSFBTFT JMMVTUSBUFE CZ B SJHIUXBSE TIJGU PG UIF EFNBOE DVSWFUPDD UIFXBHFSBUFSJTFTUPwBOEUIFMFWFMPGFNQMPZNFOUJODSFBTFTUPN5IJTJTDMFBSMZBXJOXJO TJUVBUJPOGPSCPUIUIFXPSLFSTBOEUIFmSNTJOUIFJOEVTUSZ#VUIPXDBOUIJTCFBDIJFWFE "mSTUQPTTJCJMJUZJT BOJODSFBTFJOMBCPVSQSPEVDUJWJUZ"TXFTBXFBSMJFS UIFQIZTJDBMQSPEVDUJWJUZPGMBCPVS SFQSFTFOUFECZUIF NBSHJOBM QIZTJDBM QSPEVDU MPP JT BO FTTFOUJBM FMFNFOU PG UIF EFNBOE GPS MBCPVS 5IF IJHIFS UIF MPP UIF HSFBUFSUIFEFNBOEGPSMBCPVS ceteris paribus5SBEFVOJPOTTPNFUJNFTFOUFSJOUPproductivity agreementsXJUI FNQMPZFST XIFSFCZXPSLFSTBHSFFUIBUUIFZXJMMJODSFBTFQSPEVDUJWJUZJOFYDIBOHFGPSIJHIFSXBHFT6OJPOT BMTPPGUFOKPJOFNQMPZFSTPSHBOJTBUJPOTJOMPCCZJOHHPWFSONFOUUPJNQPTFPSSBJTFJNQPSUUBSJGGTPSRVPUBTUP SFEVDFDPNQFUJUJPOGSPNJNQPSUTBOESBJTFUIFEFNBOEGPSEPNFTUJDBMMZQSPEVDFEHPPET FHJOUIFDMPUIJOHBOE UFYUJMFJOEVTUSJFT *GUIFZTVDDFFE UIFEFSJWFEEFNBOEGPSMBCPVSXJMMBMTPJODSFBTF The impact of trade unions on the labour market is a complex issue. We touch on it again in the subsection on bilateral monopoly. But first we have to examine monopsony.

218

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

FIGURE 12-9 Ways in which a trade union can attempt to increase the wage rate

Trade unions can attempt to raise the wage rate by (a) restricting supply, (b) enforcing a higher disequilibrium wage or (c) assisting firms to raise the demand for the product of the industry. The restriction of supply is illustrated in part (a) by a leftward shift of the supply curve to S1S1. Part (b) illustrates a situation in which the union succeeds in raising the wage rate to w2, which is higher than the equilibrium wage. As in (a), this is accompanied by a decline in employment. Part (c) illustrates a situation in which the union succeeds (in conjunction with the firms) in raising the demand for the product of the industry. This results in an increase in the derived demand for labour (to D1D1). The wage rate increases (to w3) and the level of employment also increases.

Monopsony "monopsonyJTBNBSLFUTUSVDUVSFJOXIJDIPOFCVZFSQVSDIBTFTBHPPEPSTFSWJDFGSPNNBOZTFMMFST*UDBOCF SFHBSEFEBTUIFPQQPTJUFPGBNPOPQPMZ JOXIJDIPOFTVQQMJFSTFMMTUPNBOZCVZFST"MBCPVSNBSLFUJOXIJDI POFFNQMPZFS UIFmonopsonist DPOGSPOUTBOVOPSHBOJTFE OPOVOJPOJTFE HSPVQPGXPSLFSTDPNQFUJOHBHBJOTU FBDIPUIFSGPSKPCT JTDBMMFEBNPOPQTPOZ"NPOPQTPOZBMTPFYJTUTXIFSFTVDIBOVOPSHBOJTFEHSPVQPGXPSLFST JT GBDFEXJUIBOFNQMPZFSTPSHBOJTBUJPOUIBU SFQSFTFOUT BMM UIF FNQMPZFST JO B QBSUJDVMBS JOEVTUSZ &YBNQMFT JODMVEFNJOJOHUPXOT XIFSFUIFNJOJOHDPNQBOZJTUIFNBKPSFNQMPZFS UPXOTXIFSFBDMPUIJOHPSUFYUJMFmSN JTUIFNBKPSFNQMPZFS PSBSVSBMBSFBXIFSFBMBSHFGBSNJOHCVTJOFTTJTUIFTPMFPSNBKPSFNQMPZFS8FMMLOPXO 4PVUI"GSJDBOFYBNQMFTXFSFUIF/BUJWF3FDSVJUJOH $PSQPSBUJPO /3$

FTUBCMJTIFE JO UP SFDSVJU MBCPVS GPSUIFHPMENJOFTGSPN4PVUI"GSJDB #PUTXBOB -FTPUIPBOE4XB[JMBOE BOEUIF8JUXBUFSTSBOE/BUJWF-BCPVS "TTPDJBUJPO 8/-"

FTUBCMJTIFEBUUIFTBNFUJNFUPSFDSVJUXPSLFSTGSPNGVSUIFSBmFME5IF/3$BOE8/-"

CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

219

DPOUSPMMFESFDSVJUNFOUPGMBCPVSGPSUIFHPMENJOFTGPSZFBST VOUJMUIFZXFSFDPNCJOFEJOUPPOFPSHBOJTBUJPO LOPXOBT5IF&NQMPZNFOU#VSFBVPG"GSJDB-JNJUFE 5" 6OMJLF B QFSGFDUMZ DPNQFUJUJWF FNQMPZFS B NPOPQTPOJTU FNQMPZFS PG MBCPVS JT OPU GBDFE XJUI B IPSJ[POUBM TVQQMZDVSWFPGMBCPVSBUUIFSVMJOHNBSLFUQSJDF6OMFTTUIFNPOPQTPOJTUJTGBDFEXJUIBQFSGFDUMZFMBTUJDTVQQMZ PGMBCPVS XIJDIXBTQSPCBCMZUIFDBTFJOUIF4PVUI"GSJDBOHPMENJOJOHJOEVTUSZXIFOUIF/3$BOE8/-"EJE UIFSFDSVJUJOH

BNPOPQTPOJTUIBTUPSBJTFUIFXBHFSBUFJGJUXJTIFTUPJODSFBTFUIFMFWFMPGFNQMPZNFOU5IJT NFBOTUIBUUIFNBSHJOBMDPTUPGMBCPVSUPUIFNPOPQTPOJTUJTHSFBUFSUIBOUIFXBHFSBUF8IZ #FDBVTFJGUIF NPOPQTPOJTUXJTIFTUPFNQMPZBOBEEJUJPOBMXPSLFSJUIBTUPQBZUIBUXPSLFSNPSFUIBOUIFSVMJOHXBHFSBUFand BMTPQBZBMMUIFFYJTUJOHXPSLFSTNPSF5IFNBSHJOBMDPTUPGMBCPVS(MCL)JTUIVTOPMPOHFSFRVBMUPUIFBWFSBHF DPTUPGMBCPVS(ACL),CVUHSFBUFSUIBOACL. 5BCMF QSPWJEFT B OVNFSJDBM FYBNQMF PG UIF DPTU PG MBCPVS BOE UIF NBSHJOBM SFWFOVF QSPEVDU PG B NPOPQTPOJTU5IFmSTUDPMVNOTIPXTUIFRVBOUJUZPGMBCPVS FHUIFOVNCFSPGXPSLFST 5IFTFDPOEDPMVNO TIPXTUIFXBHFSBUFBUXIJDIUIFRVBOUJUJFTPGMBCPVSJOUIFmSTUDPMVNOXJMMCFTVQQMJFE5IFmSTUUXPDPMVNOT UPHFUIFSUIVTSFQSFTFOUUIFTVQQMZPGMBCPVS BTXFMMBTUIFBWFSBHFDPTUPGMBCPVS(ACL)UPUIFNPOPQTPOJTU5IF UIJSEDPMVNOTIPXTUIFUPUBMDPTUPGMBCPVS(TCL)BOEUIFGPVSUIUIFNBSHJOBMDPTUPGMBCPVS(MCL).5IFMCL JT PGDPVSTF UIFBEEJUJPOUPTCLBTBSFTVMUPGUIFFNQMPZNFOUPGBOBEEJUJPOBMVOJUPGMBCPVS5IFMBTUDPMVNO TIPXTUIFNBSHJOBMSFWFOVFQSPEVDU(MRP)XIJDISFQSFTFOUTUIFNPOPQTPOJTUTEFNBOEGPSMBCPVS*UJTFRVBM UPUIFNBSHJOBMQIZTJDBMQSPEVDU(MPP)NVMUJQMJFECZUIFQSJDFPGUIFQSPEVDU(P).*OPSEFSUPGPDVTPOUIFLFZ WBSJBCMFT OFJUIFSMPPOPSPJTTIPXOTFQBSBUFMZJOUIFUBCMF*GUIJTCPUIFSTZPV ZPVDBOBTTVNFUIBUP BOEUIFSFGPSFUIBUMRPMPP CFBSJOHJONJOEUIBUMRPJTFYQSFTTFEJONPOFUBSZUFSNTBOEMPPJOQIZTJDBM UFSNT 5IFEBUBJO5BCMFBSFJMMVTUSBUFEJO'JHVSF " NPOPQTPOJTU XJMM FNQMPZ MBCPVS VQ UP UIF MFWFM XIFSF UIF NBSHJOBM DPTU PG MBCPVS MCL JT FRVBM UP UIF NBSHJOBMCFOFmUPGMBCPVS UIBUJT UIFNBSHJOBMSFWFOVFQSPEVDUPGMBCPVS MRP .*OPVSFYBNQMF UIJTJTBUBMFWFM PGVOJUTPGMBCPVS8IBUBCPVUUIFXBHFSBUF 5IFNPOPQTPOJTUXJMMQBZUIFXBHFSBUFBUXIJDIUIFSFRVJSFE RVBOUJUZPGMBCPVSXJMMCFTVQQMJFE*OPVSFYBNQMF VOJUTPGMBCPVSXJMMCFTVQQMJFEBUBXBHFSBUFFRVBMUP3 QFSVOJU5IJT UIFO JTUIFXBHFSBUFUIBUUIFNPOPQTPOJTUXJMMQBZ *G CZDPOUSBTU UIFTBNFNBSLf*ckFSFBDPNQFUJUJWFMBCPVSNBSLFU UIFNBSLFUEFNBOEGPSMBCPVS MRP XPVME JOUFSTFDUUIFNBSLFUTVQQMZPGMBCPVS ACL BUBOFNQMPZNFOUMFWFMPGVOJUTBOEBXBHFSBUFPG3QFSVOJU *OPUIFSXPSET BHSFBUFSRVBOUJUZPGMBCPVSXPVMECFFNQMPZFEBUBIJHIFSXBHFSBUFUIBOJOBNPOPQTPOJTUJD MBCPVSNBSLFU

Bilateral monopoly *ONBOZ JGOPUNPTU MBCPVSNBSLFUT JO4PVUI"GSJDBBOEFMTFXIFSF XBHFTBOEPUIFSDPOEJUJPOTPGFNQMPZNFOU BSFEFUFSNJOFEUISPVHIBQSPDFTTPGcollective bargainingCf*ckFFOUIFSFQSFTFOUBUJWFTPGUIFXPSLFSTBOEUIF SFQSFTFOUBUJWFTPGUIFFNQMPZFST8IFSFUIFSFJTBTJOHMFUSBEFVOJPOSFQSFTFOUJOHUIFXPSLFSTJOBOJOEVTUSZ BOE BTJOHMFFNQMPZFSTPSHBOJTBUJPOSFQSFTFOUJOHUIFFNQMPZFSTJOBOJOEVTUSZ UIFSFTVMUJTBbilateral monopoly *OPUIFSXPSET BNPOPQPMJTU UIFUSBEFVOJPO JTQJUUFEBHBJOTUBNPOPQTPOJTU UIFFNQMPZFSTPSHBOJTBUJPO 4PVUI"GSJDBOFYBNQMFTVTFEUPJODMVEFUIF/BUJPOBM6OJPOPG.JOFXPSLFST /6. BOEUIF$IBNCFSPG.JOFT TABLE 12-2 The cost and marginal revenue product of labour in a monopsonistic labour market

220

1 Quantity of labour (units)

2 Wage rate or average cost of labour (R) ACL

3 Total cost of labour (R) TCL (= 1 u 2)

4 Marginal cost of labour (R) MCL

5 Marginal revenue product of labour (R) MRP

1 2 3 4 5 6

3 4 5 6 7 8

3 8 15 24 35 48

3 5 7 9 11 13

15 13 11 9 7 5

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

PG4PVUI"GSJDB BOEUIF/BUJPOBM6OJPOPG.FUBMXPSLFSTPG4PVUI"GSJDB /VNTB BOEUIF4UFFMBOE&OHJOFFSJOH *OEVTUSJFT'FEFSBUJPOPG4PVUI"GSJDB 4FJGTB *OCPUIDBTFT IPXFWFS OFXQBSUJFT FH"NDV IBWFFOUFSFEUIF GSBZ The actual outcome of negotiations in a bilateral monopoly is uncertain. Trade unions desire relatively high wage rates, as illustrated in Figure 12-9(b). By contrast, monopsonistic employers desire relatively low wage rates, as illustrated in Figure 12-10. The actual outcome in a particular case will depend on the bargaining power of the union relative to that of the monopsonist. The greater the relative bargaining power of the union, the closer the actual wage rate will be to that desired by the union. Conversely, the greater the relative bargaining power of the monopsonist, the closer the actual wage rate will be to that desired by the employers’ organisation. In practice, the relative bargaining power of the two parties may even be such that the same outcome is achieved as would be the case in a perfectly competitive labour market. In collective bargaining about wages the typical points of reference in the negotiations are: t XIBUPUIFSXPSLFSTBSFHFUUJOH t DIBOHFTJOUIFDPTUPGMJWJOH t UIFFNQMPZFSTBCJMJUZUPQBZ t QSPEVDUJWJUZ FIGURE 12-10 Wage and employment determination in a monopsonistic labour market w

Wage rate (R per unit)

MCL

10 9

Competitive wage

ACL = supply of labour

8 7 6 5 MRP = demand for labour 4 Monopsony wage

3 2

Monopsony employment

Competitive employment

1

N 0

1

2

3

4

5

N

6

Quantity of labour (units per period)

The monopsonistic firm faces the supply of labour in the market, which represents its average cost of labour (ACL). Its marginal cost of labour (MCL) is greater than its ACL because all existing workers also have to be paid more if an additional worker is hired. The firm will employ labour up to the point where its marginal cost of labour (MCL) equals its marginal revenue product (MRP) of labour. This is at an employment level of 4 units. The wage rate paid will be R6 per unit, since this is the wage rate at which 4 units of labour will be supplied. If the labour market were a competitive market, MRP would represent the demand for labour. MRP intersects the supply of labour at an employment level of 5 units and a wage rate of R7. Under monopsony, both the level of employment and the wage rate are thus lower than in a perfectly competitive labour market.

CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

221

5IFSFMBUJWFCBSHBJOJOHTUSFOHUIPGUIf*ckPQBSUJFTJTEFUFSNJOFE inter alia CZ t The ratio of wage cost to total cost.5IFTNBMMFSUIFSBUJPPGXBHFDPTUUPUPUBMDPTU UIFNPSFMJLFMZBO FNQMPZFSPSFNQMPZFSTPSHBOJTBUJPOXJMMCFUPDPODFEFBXBHFDMBJNSBUIFSUIBOSJTLBDPTUMZTUSJLFEVSJOH XIJDIOPUIJOHJTQSPEVDFECVUTJHOJmDBOUPWFSIFBE mYFE DPTUTTUJMMIBWFUPCFNFU t Changes in productivity.'PSFYBNQMF JGJUDBOCFTIPXOUIBUXPSLFSTQSPEVDUJWJUZIBTJODSFBTFE PSXJMM JODSFBTF UIFVOJPOXJMMCFJOBTUSPOHFSCBSHBJOJOHQPTJUJPOUIBOJGOPTVDIFWJEFODFJTBWBJMBCMF t The relationship between the wages paid in the industr y and the wages paid elsewhere for similar work.*GJUDBOCFTIPXOUIBUXPSLFSTBSFFBSOJOHNPSFGPSTJNJMBSXPSLFMTFXIFSF UIFVOJPOTQPTJUJPOXJMM CFTUSFOHUIFOFE#ZUIFTBNFUPLFO BOJNQPSUBOUTVDDFTTGVMXBHFDMBJNFMTFXIFSFJOUIFFDPOPNZ FHJOUIF QVCMJDTFDUPS XJMMBMTPTUSFOHUIFOUIFVOJPOTIBOE t The nature of the product.'PSFYBNQMF JGUIFXPSLFSTTVQQMZBOFTTFOUJBMTFSWJDFPSQSPEVDU UIFSFNJHIU CFQSFTTVSFPOFNQMPZFSTUPSFBDIBRVJDLTFUUMFNFOU*OTPNFDBTFT IPXFWFS XPSLFSTQSPWJEJOHFTTFOUJBM TFSWJDFTBSFQSPIJCJUFEGSPNTUSJLJOH XIJDIXFBLFOTUIFVOJPOTCBSHBJOJOHQPTJUJPO t The price elasticity of the demand for the product.5IFNPSFJOFMBTUJDUIFEFNBOEGPSUIFQSPEVDU UIF HSFBUFSUIFTDPQFGPSQBTTJOHDPTUJODSFBTFTPOUPDPOTVNFSTBOEUIFTUSPOHFSUIFVOJPOTCBSHBJOJOHQPTJUJPO XJMMCF5IFPQQPTJUFBQQMJFTXIFOUIFEFNBOEGPSUIFQSPEVDUJTQSJDFFMBTUJD t The degree to which the union controls the supply of labour.5IFHSFBUFSUIFDPOUSPMPGUIFVOJPOPWFSUIF TVQQMZPGMBCPVS UIFTUSPOHFSJUTQPTJUJPOXJMMCF0OUIFPUIFSIBOE JGFNQMPZFSTDBOFBTJMZPCUBJOOPOVOJPO MBCPVS UIFZXJMMCFJOBTUSPOHFSQPTJUJPO t The level of unemployment.5IFHSFBUFSUIFMFWFMPGVOFNQMPZNFOUJOUIFFDPOPNZ SFHJPOPSJOEVTUSZ UIF XFBLFSUIFVOJPOTQPTJUJPOXJMMCF0OUIFPUIFSIBOE UIFNPSFCVPZBOUUIFFDPOPNZ UIFHSFBUFSUIFVOJPOT CBSHBJOJOHQPXFSXJMMCF t The extent to which machiner y can readily replace labour. 5IFFBTJFSJUJTUPTVCTUJUVUFNBDIJOFSZGPS MBCPVS UIFTUSPOHFSUIFCBSHBJOJOHQPTJUJPOPGUIFFNQMPZFSTXJMMCF t Increases in the cost of living.5IFDPTUPGMJWJOHJTBMXBZTBOJNQPSUBOUGBDUPSJOEFUFSNJOJOHBXBHFDMBJN "MUIPVHIFNQMPZFSTBSFOPUPCMJHFEUPDPNQFOTBUFXPSLFSTGPSJODSFBTFTJOUIFDPTUPGMJWJOH UIFJOnBUJPO SBUF NFBTVSFECZUIFSBUFPGJODSFBTFJOUIFDPOTVNFSQSJDFJOEFY JTVTVBMMZBOJNQPSUBOUZBSETUJDLJOXBHF OFHPUJBUJPOT*OTPNFDPOUSBDUTXBHFSBUFTBSFFWFOMJOLFEUPUIFDPTUPGMJWJOH XIJMFJOPUIFSDBTFTJODSFBTFT JOUIFDPTUPGMJWJOHCFZPOEBDFSUBJOUISFTIPMEUSJHHFSBEEJUJPOBMQBZNFOUTUPFNQMPZFFT8IFOJOnBUJPOJTIJHI BOE BDDFMFSBUJOH VOJPOT BSF QBSUJDVMBSMZ QSFPDDVQJFE XJUI TFDVSJOH DPTUPGMJWJOH JODSFBTFT BOE FNQMPZFST mOEJUNPSFEJGmDVMUUPSFTJTUXBHFJODSFBTFTUIBOXIFOJOnBUJPOJTMPXBOETUBCMF t The structure of the goods market.*GUIFFNQMPZFSTBSFQSPEVDJOHJODPNQFUJUJWFNBSLFUT mSNTBSFFBSOJOH OPSNBMQSPmUPOMZ TFF$IBQUFS BOEBOZJODSFBTFJODPTUTXJMMSFTVMUJOUIFCBOLSVQUDZPGUIFNBSHJOBM mSNT*OTVDIDJSDVNTUBODFT XBHFTDBOPOMZCFJODSFBTFEBUUIFFYQFOTFPGFNQMPZNFOU*GVOFNQMPZNFOU JODSFBTFT UIFSFJTBMTPBEBOHFSUIBUUIPTFXIPCFDPNFVOFNQMPZFEXJMMVOEFSDVUUIFVOJPOXBHF0OUIF PUIFSIBOE JGUIFFNQMPZFSTBSFQPXFSGVMQSJDFNBLFST UIFZNBZCFBCMFUPQBTTPOXBHFJODSFBTFTUPUIFJS DVTUPNFSTJOUIFGPSNPGIJHIFSQSJDFTBOENBZUIVTBDDFEFNPSFSFBEJMZUPXBHFEFNBOET)PXFWFS JGUIF FNQMPZFSJTBNPOPQPMJTUXIPEPFTOPUIBWFUPGFBSBOZMPTTPGNBSLFUTIBSFEVFUPTUSJLFBDUJPO UIFmSNNBZ EFDJEFUPWJHPSPVTMZSFTJTUBOZXBHFJODSFBTF These are but some of the determinants of the relative bargaining strength of unions and employers in collective bargaining about wages. It should be obvious that the actual outcome of bilateral monopoly depends on the particular circ*mstances of each case. Negotiations are often intense and protracted but in most cases a compromise solution is found.

Government intervention in the labour market One of the basic conditions for perfect competition is that there should be no government intervention in the labour market. In practice, however, governments intervene in various ways. Such intervention inhibits the functioning of the market mechanism and is often regarded as an important potential cause of unemployment and other labour market problems. *O UIF T UIF 4PVUI "GSJDBO HPWFSONFOU MBVODIFE B DPNQSFIFOTJWF MFHJTMBUJWF QSPHSBNNF BJNFE BU SFGPSNJOH UIF MBCPVS NBSLFU $SJUJDT PGUFO DJUF UIF OFX MBCPVS MBXT BT POF PG UIF NPTU JNQPSUBOU DBVTFT PG UIF IJHI BOE JODSFBTJOH VOFNQMPZNFOU BOE TMVHHJTI FDPOPNJD HSPXUI TVCTFRVFOUMZ FYQFSJFODFE JO 4PVUI "GSJDB 5IFZ QSPQPTF B NVDI MFTT SFHVMBUFE PS NPSF nFYJCMF MBCPVS NBSLFU JO XIJDI JU XJMM CF NVDI FBTJFS GPS FNQMPZFST UP BEKVTU UP DIBOHJOH DJSDVNTUBODFT SPVHIMZ TJNJMBS UP UIF QFSGFDUMZ DPNQFUJU JWF MBCPVS NBSLFU FYQMBJOFE JO 4FDUJPO 0UIFST IPXFWFS BSHVF UIBU stability JT BU MFBTU BT JNQPSUBOU BT 222

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

flexibilityBOEBTDSJCFNVDIPGUIFJOTUBCJMJUZBOESJHJEJUZJOUIF4PVUI"GSJDBOMBCPVSNBSLFUUPNJTHVJEFEQPM JDJFTPGUIFQBTU1BSUJDJQBOUTJOUIFEFCBUFUFOEUPQSFTFOUUIFDIPJDFBTBTJNQMFPOFCf*ckFFOBOemployerfriendly, flexible labour market JOXIJDIFNQMPZFSTBSFBCMFUPBEKVTUUIFTJ[F SFNVOFSBUJPOBOEXPSLJOH DPOEJUJPOT PG UIFJS XPSLGPSDFT TQFFEJMZ BOE BU MPX DPTU BOE B worker-friendly, stable labour market JO XIJDIFNQMPZFFTBSFTFDVSFMZQSPUFDUFEBHBJOTUBSCJUSBSZEJTNJTTBM SFEVDUJPOTJOFBSOJOHT EJTDSJNJOBUJPOBOE VOIFBMUIZ PS EBOHFSPVT XPSLJOH DPOEJUJPOT *O SFBMJUZ IPXFWFS UIF HPWFSONFOU PQUFE GPS BO JOUFSNFEJBUF QPTJUJPOPGregulated flexibility JOBOBUUFNQUUPTUSJLFBCBMBODFCf*ckFFOMBCPVSNBSLFUTFDVSJUZPSTUBCJMJUZ BOEUIFnFYJCJMJUZEFNBOEFECZUIFHMPCBMJTFEXPSMEFDPOPNZ5IFEFCBUFDPOUJOVFT8FEPOPUBOBMZTFBMMUIF JTTVFT IFSF *OTUFBE XF GPDVT PO POF GPSN PG JOUFSWFOUJPO JO MBCPVS NBSLFUT OBNFMZ UIF mYJOH PG NJOJNVN XBHFT*OUIFBOBMZTJTPGNJOJNVNXBHFTJUXJMMCFDPNFDMFBSUIBUPOFTIPVMEUIJOLDBSFGVMMZCFGPSFFYQSFTTJOH BOPQJOJPOPONBUUFSTSFMBUFEUPUIFMBCPVSNBSLFU

Minimum wages Wage determination is often an emotional process. When the pay of those at the bottom end of the wage structure is at issue, concepts such a basic needs, minimum living levels, living wages and calls for minimum wages tend to become emotionally loaded. We now examine the controversial issue of minimum wages. Those who are in favour of minimum wages argue that individual workers, especially those who are unskilled or inexperienced, are often at a disadvantage when negotiating with employers. When job oppor tunities are scarce, employers may exploit workers and pay very low wages. In such circ*mstances market forces do not protect workers against possible exploita-tion. Minimum wages are therefore propagated as a means of avoiding exploitation and ensuring a certain minimum standard of living for all workers. The proponents of minimum wages also justify them on other grounds. They argue, for example, that minimum wages will increase productivity. How? Firms using low-wage workers may be using labour inefficiently and the higher wages imposed by the minimum wage may shock them into using labour more efficiently. The higher wages may also improve the nutrition, health, vigour and motivation of workers, thus making them more productive. Supporters of minimum wages also point out that wages are the most significant form of income and therefore constitute the largest source of the demand for goods and services. In South Africa, for example, it is argued that increases in wages as a result of the imposition of minimum wages will raise the demand for basic consumer goods and services. This, in turn, will stimulate production, income and employment in the domestic economy. No compassionate human being would deny anyone a job at a remuneration which is adequate to permit a decent or reasonable living standard, but unfortunately this is impossible to guarantee. While the arguments in favour of minimum wages all sound attractive, other economic forces also have to be taken into account. Wages are a significant cost item and the imposition of minimum wages will therefore tend to raise costs of production, unless productivity also increases. Increased costs of production will either be passed on to consumers (in the form of higher prices) or result in a drop in the demand for labour (ie unemployment). We now examine the impact of minimum wages in perfectly competitive and monopsonistic labour markets. 䡲 A MINIMUM WAGE IN A PERFECTLY COMPETITIVE LABOUR MARKET 'JHVSFJMMVTUSBUFTXIBUXJMMIBQQFOJOBQFSGFDUMZDPNQFUJUJWFMBCPVSNBSLFUJGBNJOJNVNXBHFaboveUIF FRVJMJCSJVNXBHFSBUFJTJNQPTFEDDJTUIFEFNBOEGPSMBCPVS SSJTUIFTVQQMZPGMBCPVS wFUIFFRVJMJCSJVN XBHFSBUFBOENFUIFFRVJMJCSJVNRVBOUJUZPGMBCPVSFNQMPZFE*GUIFNJOJNVNXBHFSBUFJTmYFEBUwN BOFYDFTT TVQQMZPGMBCPVSXJMMEFWFMPQ5IFRVBOUJUZPGMBCPVSEFNBOEFEBOEFNQMPZFEXJMMGBMMUPNN"UUIFNJOJNVN XBHFUIFRVBOUJUZPGMBCPVSTVQQMJFEXJMMJODSFBTFUPN"UUIBUXBHFSBUFUIFSFXJMMUIVTCFVOFNQMPZNFOU JFBO FYDFTTTVQQMZPGMBCPVS FRVBMUPUIFEJGGFSFODFCf*ckFFONBOENN)PXFWFS JGXFDPNQBSFUIFQPTJUJPOBGUFS UIFJOUSPEVDUJPOPGUIFNJOJNVNXBHFUPUIFQPTJUJPOCFGPSFJUTJOUSPEVDUJPO UIFGBMMJOFNQMPZNFOUJTHJWFOCZ UIFEJGGFSFODFCf*ckFFONFBOENN *O 4PVUI "GSJDB UIF NBSLFUT GPS GBSN XPSLFST BOE EPNFTUJD XPSLFST BSF SFMBUJWFMZ DPNQFUJUJWF NBSLFUT DIBSBDUFSJTFECZBMBSHFBOESFMBUJWFMZFMBTUJDTVQQMZPGMBCPVSBOEMPXXBHFT8IFONJOJNVNXBHFTGPSGBSN XPSLFST BOE EPNFTUJD XPSLFST XFSF JOUSPEVDFE NBOZ PCTFSWFST GFBSFE UIBU UIF SFTVMU XPVME CF JODSFBTFE VOFNQMPZNFOU BTJMMVTUSBUFEJO'JHVSF/PDPODMVTJWFFWJEFODFJTBWBJMBCMF CVUBOFDEPUBMFWJEFODFTFFNT UP TVHHFTU UIBU TPNF GBSN BOE EPNFTUJD XPSLFST NJHIU IBWF MPTU UIFJS KPCT BT B SFTVMU PG UIF JNQPTJUJPO PG NJOJNVNXBHFT .JOJNVNXBHFTBSFBMTPTFUJOPUIFSJOEVTUSJFT CVUJONBOZJOTUBODFTUIFNJOJNVNXBHFSBUFBQQFBSTUPIBWF CFFOTFUBUMPXFSUIBOUIFFRVJMJCSJVNXBHFSBUF"TXFTBXJOUIFEJTDVTTJPOPGNJOJNVNQSJDFmYJOHJO$IBQUFS BNJOJNVNQSJDF JOUIJTDBTFUIFXBHFSBUF UIBUJTTFUCFMPXUIFFRVJMJCSJVNQSJDFIBTOPJNQBDUPOQSJDFPS RVBOUJUZ*OPUIFSXPSET UIFJNQPTJUJPOPGBNJOJNVNXBHFSBUFbelowUIFFRVJMJCSJVNXBHFSBUFXJMMIBWFOP FGGFDUPOUIFXBHFSBUFPSUIFMFWFMPGFNQMPZNFOU

CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

223

FIGURE 12-11 The impact of the imposition of a minimum wage in a perfectly competitive labour market

FIGURE 12-12 The impact of the imposition of a minimum wage in a monopsonistic labour market w d MCL

w D

S

c Wage rate (R per unit)

Wage rate

wm

E we

S 0

w1 wm

a

we

D

MRP N

Nm

Ne

b ACL = supply of labour

N1

N

Quantity of labour (units per period)

Quantity of labour

DD and SS are the demand and supply of labour respectively. The original equilibrium wage is we and the quantity of labour employed is Ne. The imposition of a minimum wage at wm decreases the quantity of labour demanded to Nm and thus causes unemployment equal to the difference between Ne and Nm. At the minimum wage wm there is an excess supply of labour equal to the difference between N1 and Nm.

N Ne Nm

Before the imposition of the minimum wage, the equilibrium level of employment is Ne and the equilibrium wage rate is we. If a minimum wage rate of wm is imposed, the supply of labour (or ACL) becomes wmab and the corresponding marginal cost of labour (MCL) becomes wmacd. The monopsonist will employ labour up to the point where MCL = MRP. This will now be at a level of employment of Nm, which is greater than Ne. As long as the minimum wage rate is above the equilibrium rate but below w1, the quantity of labour employed will increase after the imposition of the minimum wage.

As we have seen, labour markets tend to be imperfect, rather than perfectly competitive. The analysis of a perfectly competitive labour market therefore does not provide sufficient evidence to reject the case for minimum wages. In fact, in the case of a monopsonistic labour market the introduction of a minimum wage might even raise, rather than lower, the level of employment. 䡲 A MINIMUM WAGE IN A MONOPSONISTIC LABOUR MARKET 'JHVSFJMMVTUSBUFTUIFJNQBDUPGUIFJNQPTJUJPOPGBNJOJNVNXBHFJGUIFSFJTBTJOHMFFNQMPZFSJOBQBSUJDVMBS MBCPVSNBSLFU JFJOUIFDBTFPGBNPOPQTPOZ 'SPNPVSFBSMJFSEJTDVTTJPOPGNPOPQTPOZXFLOPXUIBUUIF NBSHJOBMDPTUPGMBCPVS(MCL)GBDJOHUIFNPOPQTPOJTUJTHSFBUFSUIBOUIFBWFSBHFDPTUPGMBCPVSACL XIJDIJT BMTPUIFNBSLFUTVQQMZPGMBCPVS 5IFFRVJMJCSJVNMFWFMPGFNQMPZNFOUNFJTSFBDIFEXIFSFUIFNBSHJOBMDPTU PGMBCPVS(MCL)JTFRVBMUPUIFNBSHJOBMSFWFOVFQSPEVDUPGMBCPVS(MRP).5IFFRVJMJCSJVNXBHFSBUFwFJTUIF XBHFSBUFBUXIJDIUIFFRVJMJCSJVNMFWFMPGFNQMPZNFOUXJMMCFTVQQMJFE *G UIF HPWFSONFOU OPX JNQPTFT B NJOJNVN XBHF wN above UIF DVSSFOU FRVJMJCSJVN XBHF wF UIF TVQQMZ PG MBCPVSUPUIFNPOPQTPOJTU JFUIFNPOPQTPOJTUTACL CFDPNFTwNab BOEJUTMCLCFDPNFTwNacd#f*ckFFOwN BOEa UIFTVQQMZDVSWFUPUIFFNQMPZFSJTIPSJ[POUBM BTJOUIFDBTFPGQFSGFDUDPNQFUJUJPO BOEMCLJTUIVT FRVBMUPACLMCLSFUVSOTUPJUTPSJHJOBMMFWFMCFZPOEQPJOUa5IFNPOPQTPOJTUXJMMBHBJOFNQMPZMBCPVSVQUP UIFQPJOUXIFSFMCL = MRP*O'JHVSFUIJTJTBUBOFNQMPZNFOUMFWFMNN XIJDIJTHSFBUFSUIBONF JFUIF FRVJMJCSJVNMFWFMPGFNQMPZNFOUJOUIFBCTFODFPGUIFNJOJNVNXBHF *OUIJTFYBNQMF UIFSFGPSF UIFJNQPTJUJPO PGBNJOJNVNXBHFSBUFBCPWFUIFFRVJMJCSJVNXBHFSBUFBDUVBMMZJODSFBTFTUIFFRVJMJCSJVNMFWFMPGFNQMPZNFOU 5IJTSFTVMU IPXFWFS XJMMPOMZCFPCUBJOFEBTMPOHBTUIFNJOJNVNXBHFJTTFUBUBMFWFMMPXFSUIBOw"UBOZ NJOJNVNXBHFHSFBUFSUIBOwMCLXJMMFRVBMMRPBUBMFWFMPGFNQMPZNFOUMPXFSUIBONF*GUIFNJOJNVNXBHF SBUFJTTFUBUw UIFMFWFMPGFNQMPZNFOUXJMMSFNBJOBUNF *GUIFNJOJNVNXBHFSBUFJTJNQPTFEbelowUIFFRVJMJCSJVNXBHFSBUF JUXJMM PGDPVSTF IBWFOPJNQBDUPOUIF XBHFSBUFPSUIFMFWFMPGFNQMPZNFOUJOUIFNBSLFU

224

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

䡲 CONCLUDING REMARKS ON MINIMUM WAGES The analysis above shows that the minimum wage issue is not as clearcut as either the supporters or the opponents of minimum wages tend to argue. Empirical evidence on the impact of minimum wages is inconclusive. 4PVUI"GSJDBEPFTOPUIBWFBOBUJPOBMTUBUVUPSZNJOJNVNXBHFBTJODPVOUSJFTMJLF'SBODF -VYFNCPVSH UIF/FUIFSMBOET 1PSUVHBM 4QBJO BOE UIF 6OJUFE ,JOHEPN CVU NJOJNVN XBHFT BQQMZ JO DFSUBJO JOEVTUSJFT BOE GPS DFSUBJO DBUFHPSJFT PG XPSLFST

As in the case of all kinds of minimum prices (or price floors), the level at which minimum wages are imposed is crucial. If the minimum wage is below the average market wage, it should have no significant impact on the labour market. To the extent that such a minimum wage can be enforced, it will serve only to eliminate the exploitation of unskilled labour by unscrupulous employers. But if a minimum wage is imposed above the average market wage, it can potentially give rise to unemployment, although we have seen that this does not necessarily have to be the case. A minimum wage above the market wage rate clearly benefits those workers who receive higher wages, but if it results in unemployment some workers will lose their livelihood. Thus, setting a statutory minimum wage may raise the earnings of low-paid workers who remain employed, but may make those who become unemployed worse off. Minimum wages are therefore not necessarily an effective means of combating poverty, especially in a country like South Africa where the major cause of poverty is unemployment. The solution to poverty is to raise employment rather than to raise the wages of workers who already have a job. Moreover, there is always a danger that artificially raising the price of labour might lead to an increase in unemployment (and therefore to an increase in poverty). 䡲 LABOUR IMMOBILITY AND IMPERFECT INFORMATION Among the other requirements for perfect competi-tion in the labour market listed in Section 12.3 are perfect mobility and complete knowledge of market conditions. In practice, however, workers are often geographically and occupationally immobile and lack information about job opportunities, wage rates and so on. Geographical immobilityJTUIFJOBCJMJUZPSVOXJMMJOHOFTTUPNPWFUPBKPCJOBOPUIFSQBSUPGUIFDPVOUSZPS FWFOJOUIFTBNFNFUSPQPMJUBOBSFB5IJTNBZCFCFDBVTFPGUIFmOBODJBMDPTUTPGSFMPDBUJOH UIFJODPOWFOJFODF PGNPWJOH TPDJBMPSGBNJMZUJFT UIFBWBJMBCJMJUZBOEPSDPTUPGIPVTJOHPSPUIFSGBDJMJUJFT FHTDIPPMJOH JOUIFOFX BSFB BOETPPO Occupational immobilitySFGFSTUPUIFJOBCJMJUZPSVOXJMMJOHOFTTPGQFPQMFUPNPWFUPEJGGFSFOUUZQFTPGKPC JSSFTQFDUJWFPGMPDBUJPO5IJTDPVME GPSFYBNQMF CFCFDBVTFUIFZMBDLUIFRVBMJmDBUJPOTPSBCJMJUZUPEPBMUFSOBUJWF KPCT PSCFDBVTFPGUIFMFTTEFTJSBCMFXPSLJOHDPOEJUJPOTPSGSJOHFCFOFmUTJOUIFBMUFSOBUJWFKPCT (FPHSBQIJDBMBOEPDDVQBUJPOBMNPCJMJUZBSFPGUFOBMTPJOIJCJUFECZBlack of informationPOUIFPQQPSUVOJUJFT BWBJMBCMFJOPUIFSBSFBTPSPDDVQBUJPOT.PSFPWFS JOGPSNBUJPOJTOPUBMXBZTBWBJMBCMFGSFFMZ8PSLFSTIBWFUP TFBSDIGPSJOGPSNBUJPO UIFSFCZJODVSSJOHXIBUFDPOPNJTUTDBMMsearch costs *GXPSLFSTXFSFQFSGFDUMZNPCJMF VOFNQMPZFEBOEMPXQBJEXPSLFSTXPVMENPWFUPBSFBTBOEPDDVQBUJPOT XIFSFKPCTXFSFBWBJMBCMFPSSFNVOFSBUJPOIJHIFS*OQSBDUJDF IPXFWFS TPNFXPSLFSTchooseOPUUPNPWFXIJMF PUIFSTBSFunableUPNPWF'PSFYBNQMF XBHFTNBZCFIJHIFSJO+PIBOOFTCVSHUIBOJO$BQF5PXO CVUTPNF QFPQMFNBZQSFGFSUPMJWFJO$BQF5PXOXIJMFPUIFSTNBZOPUCFBCMFUPBGGPSEUPNPWFUP+PIBOOFTCVSH4PNF XPSLFSTNBZBMTPOPUCFBMMPXFEUPNPWFUPQBSUJDVMBSMBCPVSNBSLFUTCFDBVTFFNQMPZFSTEJTDSJNJOBUFPOUIF CBTJTPGSBDF HFOEFSPSSFMJHJPO0UIFSXPSLFSTNBZOPUIBWFUIFOFDFTTBSZTLJMMT RVBMJmDBUJPOTPSFYQFSJFODFUP RVBMJGZGPSDFSUBJOPDDVQBUJPOT )BWJOHFYBNJOFETPNFMBCPVSNBSLFUJNQFSGFDUJPOT XFOPXUVSOPVSBUUFOUJPOCSJFnZUPTPNFPGUIFSFBTPOT GPSEJGGFSFODFTJOXBHFT

12.5 Wage differentials If labour were a hom*ogeneous factor of production, and were sold in perfectly competitive markets, everyone would earn exactly the same when the labour market was in equilibrium. However, as we have emphas-ised, labour is not hom*ogeneous and labour markets tend to be imperfect. As a result there are large differences between what different workers earn, even if all the various labour markets are in equilibrium. Wage differentials are permanent phenomena, not merely the result of temporary disequilibrium. In this section we indicate some of the reasons why wages differ. One of the most important reasons for the inequality in the distribution of personal income and wealth is differences in the remuneration of labour. Some other possible causes of inequality are mentioned in Box 12-3.

CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

225

To explain differences in wages, all the possible determinants of such differences have to be taken into account, since more than one usually applies to a particular occupation or group of workers. For example, a certain occupation might be unpleasant or dangerous and one may therefore expect the relevant wage to be relatively high. But the occupation might also require no particular skills and if the supply of labour is high, the actual wage might be relatively low. Likewise, a certain individual may possess certain scarce skills or abilities but the demand for those skills or abilities might be low, or the individual may be discriminated against on the basis of age, gender, race or religion, with the result that the actual wage might be relatively low. A single determinant therefore often provides an insufficient, possibly even inappropriate, explanation for actual wage differentials.

Job-related differences "mSTUSFBTPOXIZXBHFTEJGGFSJTUIBUjobs differ4PNFPDDVQBUJPOTBSFTPEBOHFSPVT IB[BSEPVT VOJOWJUJOH EJTBHSFFBCMF EJSUZ SJTLZ NPOPUPOPVTPSCPSJOHUIBUNBOZQFPQMFQSFGFSOPUUPEPUIFNBUBMM)JHIFSXBHFT DBMMFEDPNQFOTBUJOHXBHFEJGGFSFOUJBMT NVTUCFQBJEUPDPNQFOTBUFGPSUIFVOEFTJSBCMFDIBSBDUFSJTUJDTPGTVDI PDDVQBUJPOT"compensating wage differentialJTBXBHFEJGGFSFODFUIBUJTSFRVJSFEUPDPNQFOTBUFXPSLFST GPSFOUFSJOHBMFTTEFTJSBCMFPDDVQBUJPOPSBDDFQUJOHBQPTJUJPOJOBESZ EVTUZ SFNPUFPSPUIFSXJTFVOBUUSBDUJWF MPDBUJPO5IJTJTUIFSFBTPO GPSFYBNQMF XIZQFPQMFXIPXPSLOJHIUTIJGUTBSFVTVBMMZQBJENPSFUIBOUIPTFXIP XPSLEBZTIJGUT Against this, there are certain enjoyable and safe jobs which provide workers with a high degree of job security or job satisfaction. Such occupations will be less well paid than disagreeable or risky ones. University lecturers, for example, are often paid less than similarly qualified or experienced people employed elsewhere in the economy

BOX 12-3 OTHER SOURCES OF INEQUALITY Labour is only one of the factors of production and labour income is thus only one of the possible sources of income. To explain income inequality, we also have to consider the income derived from the ownership of the other factors of production: natural resources (land), capital and entrepreneurship. Recall that the incomes of these factors are called rent, interest and profit. The different types of non-labour income are often collectively called property income or asset income. Much of the inequality in the distribution of income is derived from the unequal distribution of wealth in the economy. Whereas income is a flow (the flow of earnings during a particular period), wealth is a stock (the stock of assets owned by an individual or household). Wealth can be kept in different forms, for example, cash, equities (shares), bonds, fixed property and works of art. Most forms of wealth generate an income (eg in the form of rent, interest or profit) and wealthy people therefore tend to have larger incomes than people whose main source of income is in the form of wages and salaries. Wealth can be inherited or acquired. A large proportion of very wealthy people have inherited most of their property (from which they derive large incomes). The other major source of great wealth is entrepreneurship. In a market economy, successful entrepreneurs (ie those who put together new organisations and put new ideas into action) are richly rewarded. But to become a successful entrepreneur, one has to be willing to accept risk. Some of the individuals who are willing to take on risk succeed (sometimes after first failing a number of times) and become very rich. Most, however, do not make the grade and many fall to the bottom of the income distribution ladder. By contrast, those who prefer to play it safe and avoid risk, will never reach the top of the income distribution, but are also less likely to fall to the bottom. Luck also plays a role. Some people are fortunate enough to be in the right place at the right time or to make the right choices, while others are less fortunate. Some inherit wealth, win the lottery, get ahead through personal contacts or invest in profitable ventures, while others suffer prolonged illness, become unemployed or are not afforded the opportunity of a good education. Saving behaviour is another potential source of inequality of wealth and income. Some people spend all their income while others save, thereby increasing their stock of wealth and their future income. The focus here has been on inequality in remuneration of employed persons. Broadly speaking, however, the greatest cause of the inequality in the distribution of income is unemployment. We return to the question of inequality in Chapter 15, where we discuss the role of government in the economy.

226

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

(particularly in the statutory professions and in the business world). Other job-related differences include the educational, training or skill requirements of different occupations, the importance of experience and the degree of accountability or responsibility associated with the job.

Worker-related differences "TFDPOESFBTPOXIZXBHFTEJGGFSJTUIBUpeople differ8PSLFSTBSFOPUIPNPHFOFPVT BTJTBTTVNFEJOUIF UIFPSZ PG QFSGFDU DPNQFUJUJPO &NQJSJDBM TUVEJFT BDSPTT UIF XPSME IBWF GPVOE UIBU XBHFT UFOE UP WBSZ XJUI FEVDBUJPO BHF HFOEFSBOESBDF4PNFPGUIFTFEJGGFSFODFTDBOQFSIBQTCFBTDSJCFEUPEJTDSJNJOBUJPO XIJDIJT EJTDVTTFEMBUFS

CVUTPNFBSFSFMBUFEUPPUIFSEFUFSNJOBOUTPGXBHFEJGGFSFODFT TVDIBTFYQFSJFODFBOENFOUBM BOEQIZTJDBMDIBSBDUFSJTUJDT&YQFSJFODF GPSFYBNQMF JTPOFPGUIFSFBTPOTXIZPMEFSXPSLFSTUFOEUPFBSONPSF UIBOZPVOHFSXPSLFST&YQFSJFODFJOBQBSUJDVMBSmFME IPXFWFS EPFTOPUHVBSBOUFFBIJHIFSXBHFSBUF5IFSF NVTUBMTPCFBEFNBOEGPSUIBUQBSUJDVMBSUZQFPGFYQFSJFODF 8PSLFSSFMBUFE EJGGFSFODFT DBO CF DMBTTJmFE JO UXP CSPBE DBUFHPSJFT JOOBUF DIBSBDUFSJTUJDT UIBU DBOOPU CF BDRVJSFEBOEPUIFSDIBSBDUFSJTUJDTUIBUDBOCFBDRVJSFE 4PNF QFPQMF IBWF DFSUBJO TQFDJBM UBMFOUT PS BCJMJUJFT FH JOUFMMJHFODF PS QIZTJDBM DIBSBDUFSJTUJDT TVDI BT CFBVUZ TUSFOHUIBOEEFYUFSJUZ XIJDIDBOOPUCFBDRVJSFE8IFOTVDIBCJMJUJFTBSFJOHSFBUEFNBOE UIFQFPQMF DPODFSOFE DBO FBSO BCPWFBWFSBHF TPNFUJNFT BTUSPOPNJDBM JODPNFT &YBNQMFT JODMVEF NFHBTUBST JO UIF DJOFNB UFMFWJTJPOBOENVTJDJOEVTUSJFTBOEJOUIFTQPSUJOHXPSME*OBTUVEZDPOEVDUFEJOUIF6OJUFE4UBUFTJU XBTGPVOE GPSFYBNQMF UIBUBUUSBDUJWFQFPQMFUFOEUPFBSONPSF ceteris paribus UIBOQFPQMFPGBWFSBHFMPPLT 1FPQMFXIPBSFGPSUVOBUFFOPVHIUPHFOFUJDBMMZJOIFSJUTQFDJBMNFOUBMPSQIZTJDBMGFBUVSFTPSUBMFOUTUIVTBQQFBS UPIBWFBOBEWBOUBHFPWFSUIFMFTTGPSUVOBUFPOFT *ONPTUDBTFT IPXFWFS QFPQMFDBOBDRVJSFTLJMMT FEVDBUJPO FYQFSUJTFBOEFYQFSJFODFUIBUNBLFUIFNNPSF QSPEVDUJWFBOEJODSFBTFUIFJSFBSOJOHDBQBDJUZ+VTUBTmSNTDBOJOWFTUJONBDIJOFSZBOEFRVJQNFOUUPJODSFBTF UIFJSQSPEVDUJWFBOEFBSOJOHDBQBDJUJFT TPIVNBOCFJOHTDBOJOWFTUJOUIFNTFMWFTUPSBJTFUIFJSGVUVSFFBSOJOH DBQBDJUZ'PSFYBNQMF JOEJWJEVBMTDBOJOWFTUJOBVOJWFSTJUZFEVDBUJPOPSTQFDJBMUSBJOJOHDPVSTFTXIJDIJNQSPWF UIFJS RVBMJmDBUJPOT BOE TLJMMT 5IJT JT DBMMFE investment in human capital #VU BT XJUI BOZ PUIFS GPSN PG JOWFTUNFOU DPTUTBSFJODVSSFE4PNFPOFXIPJOWFTUTJOBGVMMUJNFVOJWFSTJUZFEVDBUJPOIBTUPQBZUVJUJPOGFFT QVSDIBTFCPPLT BOETPPO#VUUIFQFSTPOBMTPIBTUPTBDSJmDFDVSSFOUFBSOJOHTJOGBWPVSPGFYQFDUFEGVUVSF FBSOJOHT*OPUIFSXPSET UIFopportunity costPGBGVMMUJNFVOJWFSTJUZFEVDBUJPOJODMVEFTUIFXBHFTUIBUDPVME IBWFCFFOFBSOFEJGUIFQFSTPOIBEUBLFOBKPCJOTUFBEPGBUUFOEJOHVOJWFSTJUZ#FDBVTFBDRVJSJOHIVNBODBQJUBM JTDPTUMZ UIFNPSFIJHIMZTLJMMFEUIFKPC UIFNPSFJUNVTUQBZJGFOPVHIQFPQMFBSFUPCFBUUSBDUFEUPUSBJOGPSJU 5IFEFNBOEGPSQBSUJDVMBSTLJMMTJT PGDPVSTF BMTPDSVDJBMMZJNQPSUBOU'PSFYBNQMF JOSFDFOUZFBSTQFPQMFXJUI TQFDJBMJTFE BDRVJSFE *5TLJMMTIBWFDPNNBOEFEIJHISBUFTPGSFNVOFSBUJPO 8JUISFHBSEUPIVNBODBQJUBM JUJTJNQPSUBOUUPCFBSJONJOEUIBUJOUFMMFDUJTVTVBMMZOPUTVGmDJFOU'PSNBOZ TQFDJBMJTFEPDDVQBUJPOT FHJOUIFWBSJPVTQSPGFTTJPOT JOWFTUNFOUJOIVNBODBQJUBMJTSFRVJSFECFGPSFBQFSTPO JTRVBMJmFEUPFOHBHFJOUIBUPDDVQBUJPO4PNFUBMFOUFEQFPQMF IPXFWFS NBZOPUCFBCMFUPBGGPSEJOWFTUNFOUJO IVNBODBQJUBM FHJOUIFGPSNPGIJHIFSFEVDBUJPO CFDBVTFUIFJSQBSFOUTBSFUPPQPPSPSCFDBVTFUIFPQQPSUVOJUZ DPTU JOUFSNTPGJODPNFGPSHPOF JTTJNQMZUPPIJHI"TJOUIFDBTFPGJOOBUFUBMFOUT GPSUVOFPSMVDLDBOUIFSFGPSF BMTPCFJNQPSUBOUBTGBSBTJOWFTUNFOUJOIVNBODBQJUBMJTDPODFSOFE "QBSUGSPNOBUVSBMUBMFOUTPSBDRVJSFETLJMMT UIFattitudePGXPSLFSTJTBMTPJNQPSUBOU4PNFEJGGFSFODFTJO FBSOJOHTDBOCFBUUSJCVUFEUPXPSLFGGPSUPSJOUFOTJUZ4PNFQFPQMFXPSLIBSE BSFQSFQBSFEUPXPSLMPOHIPVST BOE BSF SFNVOFSBUFE BDDPSEJOHMZ XIJMF PUIFST BSF MB[Z BOE UIFSFGPSF FBSO MFTT 4PNF QFPQMF BSF BMTP NPSF XJMMJOHUPTFBSDIGPSCFUUFSKPCTUIBOPUIFST 5IF immobility PG MBCPVS JT BOPUIFS JNQPSUBOU EFUFSNJOBOU PG XBHF EJGGFSFOUJBMT *G BMM XPSLFST XFSF PDDVQBUJPOBMMZ PS HFPHSBQIJDBMMZ NPCJMF XBHF EJGGFSFOUJBMT XPVME CF FMJNJOBUFE UISPVHI PDDVQBUJPOBM PS HFPHSBQIJDBMNJHSBUJPO)PXFWFS BTXFFNQIBTJTFEFBSMJFS XPSLFSTBSFPGUFOVOBCMFPSVOXJMMJOHUPNPWFGSPN POFPDDVQBUJPOUPBOPUIFSPSGSPNPOFMPDBUJPOUPBOPUIFS

Differences related to market structure "UIJSESFBTPOXIZXBHFTEJGGFSJTUIBUmarkets differ-BCPVSNBSLFUTBSFOPUQFSGFDUMZDPNQFUJUJWFNBSLFUT BOEUIFJNQFSGFDUJPOTJOUIFTFNBSLFUTDBOHJWFSJTFUPXBHFEJGGFSFODFT5IFSFMBUJWFNBSLFUQPXFSPGFNQMPZFFT BOEFNQMPZFSTEJGGFSTGSPNNBSLFUUPNBSLFUBOEDBOBGGFDUUIFPVUDPNFBTGBSBTXBHFTBSFDPODFSOFE'PS FYBNQMF XBHFTUFOEUPCFIJHIFSJOMBCPVSNBSLFUTEPNJOBUFECZUSBEFVOJPOTPSQSPGFTTJPOBMCPEJFTUIBOJO NPSFDPNQFUJUJWFNBSLFUT0OUIFPUIFSIBOE XBHFTUFOEUPCFMPXFSJONPOPQTPOJTUJDMBCPVSNBSLFUTUIBOJO DPNQFUJUJWFNBSLFUT 8BHFTBSFOPUBGGFDUFEPOMZCZUIFTUSVDUVSFPGUIFMBCPVSNBSLFU5IFTUSVDUVSFPGUIFHPPETNBSLFUJTBMTP JNQPSUBOU5IVTXPSLFSTFNQMPZFECZmSNTPQFSBUJOHJOIJHIMZDPNQFUJUJWFHPPETNBSLFUT JFmSNTUIBUDBOOPU NBLFBTJHOJmDBOUJNQBDUPOUIFQSJDFTPGUIFJSQSPEVDUT XJMMUFOEUPFBSOMFTT ceteris paribus UIBOXPSLFST CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

227

FNQMPZFE CZ mSNT UIBU IBWF B TJHOJmDBOU EFHSFF PG NBSLFU QPXFS JF UIPTF UIBU PQFSBUF JO NPOPQPMJTUJD PS PMJHPQPMJTUJDNBSLFUT 5IF TUSVDUVSF PG EFNBOE JT BMTP JNQPSUBOU 5IF MFTT FMBTUJD UIF EFNBOE GPS UIF QSPEVDU UIF IJHIFS UIF SFNVOFSBUJPOPGMBCPVSXJMMUFOEUPCF ceteris paribus 0OFPGUIFQPTTJCMFUZQFTPGNBSLFUJNQFSGFDUJPOJTHPWFSONFOUJOUFSWFOUJPO FHJOUIFGPSNPGNJOJNVNXBHF mYJOHPSPDDVQBUJPOBMMJDFOTJOH BTJOUIFDBTFPGUIFTUBUVUPSZQSPGFTTJPOToEPDUPST MBXZFST BDDPVOUBOUT FUD 4VDIJOUFSWFOUJPODBOHJWFSJTFUPXBHFEJGGFSFODFT

Differences as a result of discrimination As mentioned earlier, men tend to earn more than women and whites tend to earn more than blacks. Employers often discriminate between workers on the basis of gender, race, age, religion, creed, nationality, ethnicity or social background. While discrimination is undoubtedly one of the determinants of wage differentials, in South Africa as well as elsewhere, one should be cautious about ascribing most or all differences in remuneration to discrimination. Differences in incomes between different groups (eg the genders, race groups, religious groups, age groups) do not provide evidence of discrimination. Only that part of wage differentials that cannot be explained by other factors can be ascribed to discrimination. Labour market discriminationSFGFSTUPUIFJOGFSJPSUSFBUNFOUPGDFSUBJOXPSLFSTXJUISFTQFDUUPFNQMPZNFOU QPMJDZPSQSBDUJDFTGPSSFBTPOTOPUSFMBUFEUPUIFMBCPVSNBSLFU*UDBOUBLFTFWFSBMGPSNT'PSFYBNQMF XPNFO NBZCFSFTUSJDUFEUPiGFNBMFwKPCTTVDIBTOVSTJOH UFBDIJOHPSTFDSFUBSJBMXPSL5IFTVQQMZPGMBCPVSJOUIFTF PDDVQBUJPOT XJMM CF IJHI BOE UIF SFNVOFSBUJPO SFMBUJWFMZ MPX "U UIF TBNF UJNF NFO XJMM CF QSPUFDUFE GSPN DPNQFUJUJPO JO iNBMFw KPCT 5IJT UZQF PG EJTDSJNJOBUJPO JT TPNFUJNFT DBMMFE occupational discrimination "OPUIFSFYBNQMFJTXIFSFDFSUBJOXPSLFST PG TBZ BQBSUJDVMBSSBDFHSPVQ BSFBGGPSEFEMFTTPQQPSUVOJUZGPS FEVDBUJPOBOEUSBJOJOHUIBOPUIFST5IFSFTVMUJOHTLJMMEJGGFSFODFTDBOCFBTDSJCFEUPEJTDSJNJOBUJPO TPNFUJNFT DBMMFEhuman-capital discriminationRacial discrimination IBTBMXBZTCFFOBGFBUVSFPGUIF4PVUI"GSJDBO MBCPVSNBSLFU%VSJOHUIFBQBSUIFJEFSBDFSUBJOKPCTXFSFSFTFSWFEGPSXIJUFT XIJMFiOPOXIJUFTwXFSFPGUFO QBJEMFTTUIBOXIJUFTJOTJNJMBSKPCT4JODFUIFT OFXGPSNTPGEJTDSJNJOBUJPOIBWFBQQFBSFEJO4PVUI"GSJDB TVDIBTBGmSNBUJWFBDUJPO FNQMPZNFOUFRVJUZBOECMBDLFDPOPNJDFNQPXFSNFOU5IFTFNFBTVSFTPSTUSBUFHJFT BSFBUUFNQUTUPSFESFTTUIFJOFRVJUJFTPGUIFQBTUBOEUPDPNQFOTBUFUIPTFHSPVQTXIPXFSFQSFWJPVTMZTVCKFDU UPSBDJBM HFOEFSPSPUIFSGPSNTPGEJTDSJNJOBUJPO *ODPODMVTJPOJUTIPVMECFOPUFEUIBUdiscrimination BQBUUFSOPGCFIBWJPVS JTOPUUIFTBNFBTprejudice PS BUUJUVEF "MUIPVHIEJTDSJNJOBUJPONBZTPNFUJNFTCFSPPUFEJOQSFKVEJDF UIFMBUUFSEPFTOPUOFDFTTBSJMZSFTVMUJO EJTDSJNJOBUJPO'PSFYBNQMF BOFNQMPZFSNJHIUCFQSFKVEJDFEBHBJOTUCMBDLXPSLFST CVUDPVMEOFWFSUIFMFTTIJSF UIFNCFDBVTFUIFZXJMMXPSLGPSMPXFSXBHFTUIBOXIJUFT#ZDPOUSBTU BOPUIFSFNQMPZFSXIPJTOPUQSFKVEJDFE BHBJOTU CMBDL XPSLFST BU BMM NJHIU EFDJEF UP FNQMPZ XIJUF XPSLFST CFDBVTF UIFZ EP OPU IBWF UP USBWFM MPOH EJTUBODFTUPHFUUPXPSL

Differences in productivity 5IFHSFBUFSUIFWBMVFPGXPSLFSTDPOUSJCVUJPOTUPUIFJSFNQMPZFSTBDUJWJUJFT UIFIJHIFSUIFJSXBHFTXJMMUFOE UPCF*OQSFWJPVTTFDUJPOTXFEFmOFEUIFTFDPOUSJCVUJPOTJOUFSNTPGUIFJSNBSHJOBMSFWFOVFQSPEVDU MRP . 5IJT JOUVSO DPOTJTUTPGUIFNBSHJOBMQIZTJDBMQSPEVDU MPP BOEUIFQSJDFPGUIFSFMFWBOUQSPEVDU P .8BHFT UIFSFGPSFUFOEUPCFSFMBUFEUPQIZTJDBMMBCPVSQSPEVDUJWJUZBOEUIFNBSLFUTJOXIJDIUIFQSPEVDUTNBEFCZUIF XPSLFST BSF TPME 1IZTJDBM QSPEVDUJWJUZ JO UVSO EFQFOET QBSUMZ PO MBCPVS RVBMJUZ UIBU JT UIF XPSLFSSFMBUFE GBDUPSTEJTDVTTFEFBSMJFS FHTLJMM FYQFSJFODF FEVDBUJPOBOEXPSLFGGPSU #VUMBCPVSQSPEVDUJWJUZBMTPEFQFOET POGBDUPSTCFZPOEUIFXPSLFSTDPOUSPM TVDIBTUIFBWBJMBCJMJUZBOERVBMJUZPGPUIFSGBDUPSTPGQSPEVDUJPO FH DBQJUBMBOEUFDIOPMPHZ BOEUIFRVBMJUZPGNBOBHFNFOU.PSFPWFS UIFNPOFUBSZWBMVFPGXPSLFSTDPOUSJCVUJPOT XJMMEFQFOEPOUIFQSJDFTPGUIFHPPETUIFZQSPEVDF'PSFYBNQMF UIFHSFBUFSUIFEFNBOEGPSUIFQBSUJDVMBS HPPET UIFIJHIFSUIFQSJDFTPGUIFHPPETXJMMCF ceteris paribus BOEUIFSFGPSFUIFHSFBUFSUIFMRPPGUIFXPSLFST QSPEVDJOHUIPTFHPPET#FDBVTFUIFEFNBOEGPSMBCPVSJTBEFSJWFEEFNBOE BOZUIJOHUIBUBGGFDUTUIFEFNBOEGPS BQBSUJDVMBSQSPEVDUXJMM ceteris paribus JNQBDUPOUIFXBHFTPGUIFXPSLFSTXIPQSPEVDFUIFQSPEVDU-JLFXJTF DIBOHFTJONBSLFUTVQQMZDBOBMTPBGGFDUUIFXBHFTJOUIFmSNPSJOEVTUSZJORVFTUJPO

228

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

APPENDIX 12-1 OTHER FACTOR MARKETS In Chapter 12 we examined the labour market, the most important factor market in the economy. In this appendix we touch briefly on the markets for the other factors of production (ie natural resources or land, capital and entrepreneurship) and the remunera-tion (or prices) of these factors (ie rent, interest and profit).

Land (natural resources) and rent

Rent (R per unit)

-BOEBOEPUIFSOBUVSBMSFTPVSDFT FHUIFPDFBOBOENJOFSBMT BSFHFOFSBMMZfixedJOUPUBMsupply5IFZBSFOPO QSPEVDFEGBDUPSTPGQSPEVDUJPOBOEDBOCSPBEMZCFSFHBSEFEBTHJGUTPGOBUVSF"TUIF"NFSJDBODPNFEJBO 8JMM 3PHFST PODFSFNBSLFEi-BOEJTBHPPEJOWFTUNFOUUIFZBJOUNBLJOHJUOPNPSFw-JLFUIFEFNBOEGPSBOZPUIFS GBDUPSPGQSPEVDUJPO UIFEFNBOEGPSMBOEJTBderived demand*UJTEFNBOEFEOPUGPSJUTPXOTBLF CVUGPSXIBU DBOCFQSPEVDFEXJUIJU r 5IFpriceQBJEGPSUIFVTFPGMBOEBOEPUIFSOBUVSBMSFTPVSDFT S JTDBMMFErent*UJTJNQPSUBOUUPOPUFUIBUFDPOPNJTUTVTFUIFUFSN D 1 SFOUJOBTQFDJmDGBTIJPO8IFSFBTQFPQMFPGUFOTQFBLPGSFOUJOH BDBS IPVTFPSnBU GPSFDPOPNJTUTSFOUJTUIFQBZNFOUNBEFGPS D0 UIFVTFPGMBOE4JODFUIFTVQQMZPGMBOEJTmYFE UIFQSJDFPGMBOE D2 r1 JF SFOU JT FTTFOUJBMMZ EFUFSNJOFE CZ UIF EFNBOE GPS MBOE BT JMMVTUSBUFEJOUIFEJBHSBN r0 *O UIF EJBHSBN SS SFQSFTFOUT UIF mYFE RVBOUJUZ PG MBOE 5IF D1 r2 PSJHJOBMEFNBOEJTSFQSFTFOUFECZDD. 5IFJOUFSBDUJPOPGTVQQMZ BOE EFNBOE ZJFMET BO FRVJMJCSJVN SFOU PG r *G UIF EFNBOE GPS D0 MBOE TIPVME JODSFBTF JMMVTUSBUFE CZ B SJHIUXBSE VQXBSE TIJGU D2 PG UIF EFNBOE DVSWF UP DD UIF FRVJMJCSJVN SFOU XJMM JODSFBTF Q Q 0 UPr-JLFXJTF JGUIFEFNBOEGPSMBOETIPVMEEFDSFBTF EFQJDUFE S CZBMFGUXBSE EPXOXBSE TIJGUPGUIFEFNBOEDVSWFUPDD UIF Quantity of land (units) FRVJMJCSJVN SFOU XJMM GBMM UP r 3FOU JT UIVT DPNQMFUFMZ EFNBOE EFUFSNJOFE Economic rentJTEFmOFEBTUIFQBZNFOUNBEFUPBOZGBDUPSPGQSPEVDUJPOPWFSBOEBCPWFXIBUJTOFDFTTBSZ UPLFFQUIFGBDUPSJOJUTQSFTFOUVTF*UJTUIVTTJNJMBSUPUIFQSPEVDFSTVSQMVTJOUSPEVDFEJO$IBQUFS4JODFUIF TVQQMZPGMBOEJTmYFE JSSFTQFDUJWFPGUIFQSJDFPGMBOE JFSFOU

UIFUPUBMBNPVOUFBSOFEGSPNMBOEJTUIFSFGPSF FDPOPNJDSFOU5IJTJTXIFSFUIFUFSNiFDPOPNJDSFOUwIBEJUTPSJHJO 5IFSF BSF PG DPVSTF EJGGFSFODFT JO UIF RVBMJUZ PS QSPEVDUJWJUZ PG MBOE 4PNF MBOE JT GFSUJMF BOE JT TJUV BUFEJOBSFBTXJUIIJHISBJOGBMMBOENJMEDMJNBUFT XIJMFPUIFSMBOEJTMFTTGFSUJMFBOETJUVBUFEJOBSFBTXJUIMPX SBJOGBMMBOEFYUSFNFDMJNBUFT FHJOUIF,BMBIBSJPSUIF,BSPP 4PNFMBOEDPOUBJOTWBMVBCMFNJOFSBMSFTPVSDFT XIJMFPUIFSMBOEEPFTOPUDPOUBJOBOZTVDISFTPVSDFT-PDBUJPOJTBMTPJNQPSUBOU'PSFYBNQMF MBOEJOSFNPUF BSFBTJTNVDIMFTTTPVHIUBGUFSUIBOMBOEJONFUSPQPMJUBOBSFBT5IFTFEJGGFSFODFTJOQSPEVDUJWJUZPSMPDBUJPOBSF SFnFDUFEJOUIFEFNBOEGPSMBOE5IFNPSFQSPEVDUJWFUIFMBOEPSUIFNPSFTPVHIUBGUFSUIFMPDBUJPO UIFHSFBUFS UIFEFNBOEGPSMBOEBOEUIFIJHIFSUIFSFOUXJMMCF *U JT TPNFUJNFT BSHVFE UIBU TJODF MBOE JT B HJGU PG OBUVSF JU TIPVME CF BWBJMBCMF UP FWFSZPOF )PXFWFS BT XF FYQMBJO JO $IBQUFS DPNNPO QSPQFSUZ SFTPVSDFT DSFBUF B WBSJFUZ PG QSPCMFNT OPUBCMZ PWFSFYQMPJUB UJPO5IJTJTPGUFOSFGFSSFEUPBTUIFUSBHFEZPGUIFDPNNPOT1SJWBUFPXOFSTIJQBOEUIFQBZNFOUPGSFOUSFTVMUJO BNPSFFGmDJFOUBOEFGGFDUJWFBMMPDBUJPOPGMBOEBOEPUIFSTDBSDFSFTPVSDFT

Capital and interest *ODPOUSBTUUPMBOE DBQJUBMJTBQSPEVDFEGBDUPSPGQSPEVDUJPO3FDBMMUIBUDBQJUBMBTBGBDUPSPGQSPEVDUJPOSFGFST UPHPPET FHQMBOU NBDIJOFSZ FRVJQNFOU CVJMEJOHT SPBET CSJEHFT UIBUBSFVTFEUPQSPEVDFPUIFSHPPET'JSNT OFFE DBQJUBM JO UIF QIZTJDBM TFOTF UP QSPEVDF HPPET BOE TFSWJDFT "T XJUI BOZ PUIFS GBDUPS PG QSPEVDUJPO UIF EFNBOE GPS DBQJUBM JT B derived demand 'JSNT FNQMPZ DBQJUBM GPS UIF QSPEVDUT XIJDI JU DSFBUFT .PSF TQFDJmDBMMZ mSNTXJMMVTFDBQJUBMHPPETVQUPUIFQPJOUXIFSFUIFNBSHJOBMGBDUPSDPTUFRVBMTUIFNBSHJOBMCFOFmU JFUIFNBSHJOBMSFWFOVFQSPEVDU PGUIFGBDUPS The calculation of the benefit (or productivity) of capital is quite complicated. The return on investment in capital goods is spread out over the lifetime of the asset, which can be many years. Moreover, a benefit today is worth much more than the same benefit in ten years’ time (even if there is no inflation). Future benefits therefore have

CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

229

Interest rate (percentage)

to be discounted by using an appropriate interest rate. Alternatively, a percentage rate of return on capital can be calculated by determining the discount rate which will make the present value of the expected future benefits of the capital good equal to its cost. If this rate of return is greater than the rate of interest at which the firm can borrow funds, it will be worthwhile to make the investment. The rate of interest is thus an important factor in the investment decision (ie the decision to purchase capital goods). 4JODFSFTPVSDFTBSFTDBSDF UIFQSPEVDUJPOPGDBQJUBMHPPETFOUBJMTBTBDSJmDFPSPQQPSUVOJUZDPTUJOUFSNT PG B SFEVDFE QSPEVDUJPO PG DPOTVNFS HPPET 1VU EJGGFSFOUMZ TPDJFUZ IBT UP SFGSBJO GSPN DPOTVNQUJPO JF TBWF UPFYQBOEJUTQSPEVDUJWFDBQBDJUZ"DDPSEJOHUPOFPDMBTTJDBMUIFPSZ UIFDSVDJBMGBDUPSJOUIJTSFHBSE JT UIF JOUFSFTU SBUF XIJDI JT EFUFSNJOFE CZ UIF JOUFSBDUJPO Cf*ckFFOUIFEFNBOEGPSCPSSPXFEGVOET XIJDIJTEFSJWFE i GSPN UIF EFTJSF UP JOWFTU JO DBQJUBM HPPET BOE UIF TVQQMZ PG MPBOBCMF GVOET XIJDI JT EFSJWFE GSPN UIF QSPQFOTJUZ UP S TBWF "TJMMVTUSBUFEJOUIFEJBHSBN UIFEFNBOEGPSCPSSPXFE D GVOET XIJDIDBOCFSFHBSEFEBTUIFEFNBOEGPSDBQJUBM JT JOWFSTFMZSFMBUFEUPUIFJOUFSFTUSBUF TJODFNPSFJOWFTUNFOU QSPKFDUT CFDPNF QSPmUBCMF BU MPXFS JOUFSFTU SBUFT 0O UIF i0 PUIFSIBOE UIFTVQQMZPGMPBOBCMFGVOET XIJDIJTTPNFUJNFT BMTP DBMMFE UIF TVQQMZ PG DBQJUBM JT QPTJUJWFMZ SFMBUFE UP UIF SBUF PG JOUFSFTU TJODF UIF IJHIFS UIF JOUFSFTU SBUF UIF D NPSFBUUSBDUJWFJUCFDPNFTUPTBWFSBUIFSUIBOUPDPOTVNF "DDPSEJOHUPUIJTUIFPSZ XIJDIJTDBMMFEUIFloanable funds theory UIF JOUFSFTU SBUF BEKVTUT UP FRVBUF UIF RVBOUJUZ PG S GVOETEFNBOEFEXJUIUIFRVBOUJUZPGGVOETTVQQMJFE Q Q 0 *O UIF EJBHSBN DD SFQSFTFOUT UIF EFNBOE GPS MPBOBCMF Q0 GVOET EFSJWFE GSPN UIF EFNBOE GPS DBQJUBM HPPET XIJDI JO Quantity of funds per period UVSO JT EFSJWFE GSPN UIF QSPEVDUJWJUZ PG DBQJUBM

XIJMF SS SFQSFTFOUTUIFTVQQMZPGMPBOBCMFGVOET XIJDIJTEFUFSNJOFE CZUIFQSPQFOTJUZUPTBWF 5IFFRVJMJCSJVNSBUFPGJOUFSFTU i JTEFUFSNJOFECZUIFJOUFSBDUJPOPGEFNBOEBOETVQQMZ/PUF IPXFWFS UIBU UIFMPBOBCMFGVOETUIFPSZJTPOMZPOFPGBSBOHFPGQPTTJCMFUIFPSJFTPGUIFSBUFPGJOUFSFTUBOEQFSUBJOTUPMPOH UFSNJOUFSFTUSBUFTPOMZ 5IFMPBOBCMFGVOETUIFPSZBOEPUIFSUIFPSJFTPGUIFJOUFSFTUSBUFNBZDSFBUFUIFJNQSFTTJPOUIBUNPOFZPS mOBODFJTBGBDUPSPGQSPEVDUJPO"TFNQIBTJTFEJO$IBQUFS UIJTJTOPUUIFDBTF.POFZPSmOBODFDBOOPU QSPEVDF HPPET BOE TFSWJDFT 5IF GBDUPST PG QSPEVDUJPO BSF MBOE OBUVSBM SFTPVSDFT

MBCPVS DBQJUBM BOE FOUSFQSFOFVSTIJQ#VUmSNTIBWFUPmOBODFUIFBDRVJTJUJPOPGDBQJUBMHPPET XIJDIDPOUSJCVUFUPQSPEVDUJPO CVUPOMZZJFMEBSFUVSOPWFSMPOHQFSJPET*OPUIFSXPSET mSNTIBWFUPPCUBJOmOBODFUPCVZUIFDBQJUBMHPPET SFRVJSFEUPQSPEVDFHPPETBOETFSWJDFT "MUIPVHIXFPGUFOUBMLBCPVUiUIFJOUFSFTUSBUFwUIFSFJTBDUVBMMZBrange of interest ratesPOEJGGFSFOUUZQFTPG mOBODJBMJOTUSVNFOUT5IFTFSBUFTEJGGFSBTBSFTVMUPGGBDUPSTTVDIBTEJGGFSFODFTJOSJTL NBUVSJUZ UIFMJRVJEJUZPS NBSLFUBCJMJUZPGUIFJOTUSVNFOU UIFTJ[FPGMPBOTBOENBSLFUTUSVDUVSF JODMVEJOHNBSLFUJNQFSGFDUJPOT "OPUIFSJNQPSUBOUEJTUJODUJPOJTUIBUCf*ckFFOUIFnominal interest rateBOEUIFreal interest rate5IFSFBM JOUFSFTUSBUFJTUIFEJGGFSFODFCf*ckFFOUIFOPNJOBMJOUFSFTUSBUFBOEUIFJOnBUJPOSBUF'PSFYBNQMF JGUIFOPNJOBM JOUFSFTUSBUFJTQFSDFOUBOEUIFJOnBUJPOSBUFJTQFSDFOU UIFSFBMJOUFSFTUSBUFJT o QFSDFOU3FBM JOUFSFTUSBUFTDBOCFQPTJUJWFPSOFHBUJWF'PSFYBNQMF JGUIFOPNJOBMJOUFSFTUSBUFJTQFSDFOUBOEUIFJOnBUJPO SBUFJTQFSDFOU UIFSFBMJOUFSFTUSBUFJT o o QFSDFOU5IFSFBMJOUFSFTUSBUFJTUIFJNQPSUBOUPOFBTGBS BTUIFBMMPDBUJPOPGGBDUPSTPGQSPEVDUJPOJTDPODFSOFE'PSFYBNQMF JGUIFSFBMJOUFSFTUSBUFJTOFHBUJWFBOESFBM XBHFTBSFIJHI DBQJUBMJTSFMBUJWFMZJOFYQFOTJWFBOEmSNTXJMMUFOEUPEFNBOENPSFDBQJUBMBOETVCTUJUVUFDBQJUBM GPSMBCPVS DPNQBSFEUPBTJUVBUJPOXIFSFUIFSFMBUJWFQSJDFPGDBQJUBMJTIJHI

Entrepreneurship and profit The fourth factor of production is entrepreneurship. The entrepreneur is the person who takes the initiative to combine the other factors of production in producing a good or service; makes the basic, non-routine policy decisions for the firm; introduces innovations in the form of new products or production processes; and bears the economic risks associated with all these functions. Entrepreneurship is rewarded in the form of profit. Profit acts as an incentive to produce, take risks and introduce new products and processes. It also acts as an indicator of efficiency or success. The meaning of profit was discussed in some detail in Chapter 9. The important point here is that profit is not something ominous, sinister or sinful. Profit is the remuneration of the entrepreneur,

230

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

who is the driving force in a private enterprise economy. Moreover, only the successful entrepreneurs are rewarded. For each highly successful entrepreneur there are many would-be entrepreneurs who do not make the grade and therefore earn no profit, and even the successful ones often fail a number of times before achieving success.

IMPORTANT CONCEPTS

Wage rate Earnings Nominal wage Real wage Supply of labour Backward-bending supply curve Demand for labour Derived demand

Marginal physical product Marginal revenue product Marginal cost of labour Trade union Monopsony Collective bargaining Bilateral monopoly Flexible labour market

CH A P T ER 12 T H E F A CT OR M ARKE T S : THE LABOUR MA RKET

Minimum wages Mobility of labour Wage differentials Compensating wage differential Investment in human capital Discrimination Productivity

231

Nobel Laureates in economics, 1991–2014 1991 Ronald H Coase (Britain) 1992 Gary S Becker (United States) 1993 Robert W. Fogel, Douglass C North (United States) 1994 John C Harsanyi, John F Nash Jr. (United States), Reinhard Selten (Germany) 1995 Robert E Lucas Jr (United States) 1996 James A Mirrlees (Britain), William Vickrey (United States) 1997 Robert C Merton, Myron S Scholes (United States) 1998 Amartya Sen (India) 1999 Robert A Mundell (United States) 2000 James J Heckman, Daniel L McFadden (United States) 2001 George A Akerlof, A Michael Spence, Joseph E Stiglitz (United States) 2002 Daniel Kahneman, Vernon L Smith (United States) 2003 Robert F Engle (United States), Clive WJ Granger (Britain) 2004 Finn E Kydland, Edward C Prescott (United States) 2005 Robert J Aumann (Israel), Thomas C Schelling (United States) 2006 Edmund S Phelps (United States) 2007 Leonid Hurwicz, Eric Maskin, Roger Myerson (United States) 2008 Paul Krugman (United States) 2009 Elinor Ostrom, Oliver Williamson (United States) 2010 Peter A Diamond, Dale T Mortensen (United States), Christopher A Pissarides (Cyprus) 2011 Thomas J Sargent, Christopher A Sims (United States) 2012 Alvin E Roth, Lloyd S Shapely (United States) 2013 Eugene Fama, Lars Peter Hansen, Robert J Shiller (United States) 2014 Jean Tirole (France)

C HA P T E R 1 2 THE FA CTOR MA RKETS: THE LA BOU R M A RKE T

3 performance Measuring the of the economy

Chapter overview 13.1 Macroeconomic objectives 13.2 Measuring the level of economic activity: gross domestic product 13.3 Other measures of production, income and expenditure ù.FBTVSJOHFNQMPZNFOUBOEVOFNQMPZNFOU ù.FBTVSJOHQSJDFTUIFDPOTVNFSQSJDFJOEFY 13.6 Measuring the links with the rest of the world: the balance of payments 13.7 Measuring inequality: the distribution of income Important concepts

When you cannot measure what you are speaking about, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind. LORD KELVIN

When you can measure what you are speaking about, when you can express it in numbers, your knowledge is still of a meagre and unsatisfactory kind. FRANK KNIGHT

Statistical figures referring to economic events are historical data. They tell us what happened in a non-repeatable historical case. LUDWIG VON MISES

Learning outcomes Once you have studied this chapter you should be able to 䡲 䡲 䡲 䡲 䡲 䡲 䡲 䡲

explain the five main macroeconomic objectives explain what the national accounts represent define the most important national accounting concepts show how the basic national accounting concepts are linked define the unemployment rate define and interpret the consumer price index (CPI) explain the balance of payments explain a Lorenz curve and the Gini coefficient

E

conomists are frequently confronted with questions such as: How is the economy performing? What are our economic prospects? Are things going to improve and, if so, when? Why are certain economies doing so well while others are struggling? The people who ask these questions are usually interested only in their own wellbeing. They want to know what is going to happen to their own living standards. But the economist must take a broader view and must be able to judge the overall or macroeconomic performance of the economy. This raises two important questions: tù8IBUDSJUFSJBTIPVMECFVTFE tù)PXDBOUIFTFDSJUFSJBCFRVBOUJmFEPSNFBTVSFE *O UIJT DIBQUFS XF FYQMBJO IPX UIF QFSGPSNBODF PG UIF FDPOPNZ JT NFBTVSFE 8F mSTU PVUMJOF UIF NBKPS macroeconomic goals or objectives and then explain how the performance in respect of each objective is measured. We devote a large part of the chapter to a discussion of the national accounts, which contain information about total production, income and spending in the economy. We also explain the consumer price index, the balance of payments and the measurement of unemployment and income distribution. 233

The performance of a company such as Sasol, Impala Platinum or Pick n Pay is usually judged in terms of its QSPmUBCJMJUZ BOETUBOEBSEBDDPVOUJOHUFDIOJRVFTBSFVTFEUPNFBTVSFQSPmU#VUIPXEPXFBTTFTTUIFQFSGPSNBODF PGUIFFDPOPNZBTBXIPMF 5IJTJTXIBUUIJTDIBQUFSJTBMMBCPVU*OUIFmSTUTFDUJPOXFJEFOUJGZmWFCBTJDDSJUFSJBGPS judging the performance of the economy and in the subsequent sections we take a closer look at the measurement of the per formance of the economy in respect of each of these criteria. Since we are dealing with the economy as a whole, the focus is on macroeconomic objectives, rather than on the position of individual participants or groups of participants in the economic process.

13.1 Macroeconomic objectives "TJOEJDBUFEJO$IBQUFS FDPOPNJTUTVTVBMMZEJTUJOHVJTImWFNBDSPFDPOPNJDPCKFDUJWFTXIJDIDBOCFVTFEUP judge the performance of the economy and which also serve as the main objectives of macroeconomic policy: t FDPOPNJDHSPXUI t GVMMFNQMPZNFOU t QSJDFTUBCJMJUZ t CBMBODFPGQBZNFOUTTUBCJMJUZ PSFYUFSOBMTUBCJMJUZ

t FRVJUBCMFEJTUSJCVUJPOPGJODPNF The first and arguably the most important criterion is economic growth. In a growing economy, the total production of goods and services will increase from one period to the next. If the population is growing and there is no economic growth, average living standards cannot increase, and it will also not be possible to create enough jobs for the growing population. The measurement of economic growth requires a yardstick for measuring the total production of goods and services. This is no simple matter and much of this chapter is concerned with this question. We return to the measurement of economic growth in Chapter 22. A second, related objective is full employment. Ideally all the country’s factors of production, particularly labour, should be fully employed. In practice, however, every country experiences unemployment. Unemployment has serious costs, both to the people who are unemployed and for society at large. At a personal level the people who are unemployed suffer materially as well as psychologically. At the macro level unemployment poses a serious threat to social and political stability. Unemployment should therefore be kept as low as possible, but this is a daunting challenge. In fact, as we mention in Section 13.4, even the measurement of unemployment is no easy task. As mentioned above, one of the purposes of economic growth is to create additional employment opportunities for a growing population. But economic growth does not guarantee full employment. A group of workers can, for example, use more or better machines to produce an increased amount of goods and services. In other words, production can be raised without employing more people. Nevertheless, economic growth is a necessar y condition for the expansion of employment opportunities. It is highly unlikely that the number of jobs in a country will increase if the total production of goods and services is not increasing. Unemployment is discussed in more detail in Chapter 21. The third objective is price stability. Price stability does not mean that all prices should always stay constant. In a market-based mixed economy individual prices should respond to changes in supply and demand, as explained in detail in Chapters 4 and 5. But anyone living in South Africa during the period since the Second World War, and particularly since 1973, knows that most (if not all) prices have tended to increase from one year to the next. The process of increases in the general level of prices is called inflation. Inflation has various harmful effects. When economists talk of price stability as an objective, they refer to the objective of keeping inflation as low as possible. When we judge the performance of the economy we therefore have to look at what is happening to prices. In order to do this we must have a measure or yardstick of the movements in all the prices in the economy. The most important yardstick is the consumer price index, which we explain in Section 13.5. The measurement of inflation is discussed further in Chapter 20. The fourth objective is balance of payments or external stability. Nowadays there is a high degree of interdependence between different countries. South Africa is no exception. Many of the goods produced in South Africa, particularly metals and minerals, are exported to other countries. South Africa also has to import machinery, equipment and other goods from abroad. To pay for these imports the country has to earn the necessary foreign currency (dollars, pounds, euros, yuan, yen, etc) by exporting goods and services. Some balance between exports and imports is therefore required. In technical terms we say that the balance of payments and exchange rates should be fairly stable. This is what the objective of balance of payments stability (or external stability) is all about. The balance of payments is introduced in Section 13.6. Other aspects relating to the foreign sector, including the exchange rate, are dealt with in more detail in Chapter 16. The fifth objective is an equitable (or socially acceptable) distribution of income. Like the other economic objectives, the distribution objective is partly a subjective or normative issue. Value judgements are always important 234

C HA P T E R 1 3 MEA SURI NG THE PERFORMA NCE OF THE E CON OM Y

when priorities have to be assigned to the different objectives. But the distribution issue is often a particularly emotional issue. While most people will agree that economic growth, full employment, price stability and external stability are all desirable objectives that ought to be pursued, not everyone will agree that the distribution of income should be meddled with. Some, for example, regard an unequal distribution of income as a means of stimulating saving and investment which will eventually also benefit the poor. However, apart from possible unfairness or injustice, a highly unequal distribution of income tends to generate social and political conflict. It can also have important effects on the structure and development of the economy. We explain the measurement of the distribution of income in Section 13.7. South Africa has a particularly unequal distribution of personal income.

13.2 Measuring the level of economic activity: gross domestic product 5IFmSTUTUFQJONFBTVSJOHFDPOPNJDHSPXUIJTUPEFUFSNJOFBDPVOUSZTUPUBMQSPEVDUJPOPGHPPETBOETFSWJDFT JOBTQFDJmDQFSJPE*OPUIFSXPSET UIFQSPEVDUJPOPGBMMUIFEJGGFSFOUHPPETBOETFSWJDFTNVTUCFDPNCJOFEJOUP one measure of total production or output. This complicated task is performed in South Africa by the national BDDPVOUJOHTFDUJPOTPG4UBUJTUJDT4PVUI"GSJDB 4UBUT4" BOEUIF4PVUI"GSJDBO3FTFSWF#BOL 4"3# 5IFPGmDJBMT who are responsible for this task may be regarded as the accountants or bookkeepers of the economy as a whole. +VTUMJLFBOPSEJOBSZBDDPVOUBOUIBTUPLFFQSFDPSEPGUIFBDUJWJUJFTPGBOJOEJWJEVBMmSN UIFOBUJPOBMBDDPVOUBOUT have to draw up a set of accounts which reflect the level and composition of the total activity in an economy during a particular period. Obviously, this is a daunting task. The central concept in the national accounts is the gross domestic product (GDP). The gross domestic product is the total value of all final goods and ser vices produced within the boundaries of a countr y in a particular period (usually one year). GDP is one of the most important barometers of the performance of the economy. At first glance it seems to be a clear and simple concept. But how do the national accountants succeed in adding up all the different types of economic activity in the country during a particular period? To explain this, we have to examine the various elements of the definition of GDP. The first important element is value. How is it possible to add together various goods and services such as apples, pears, skirts, shoes, medical services, education and computers to arrive at one meaningful figure of the total production of goods and services? The solution is to use the prices of the various goods and services to obtain the value of production. Once the production of each good or service is expressed in rand and cents, the total value of production can be determined by adding the different values together. Twenty apples cannot be added to thirty pears, but the market value of twenty apples can be added to the market value of thirty pears to obtain a combined measure of the two. For example, if apples cost 80 cents each and pears R1,00 each, then the value of 20 apples will be R16 (ie 20uR0,80) and the value of 30 pears will be R30 (ie 30uR1,00). The combined value of the two will thus be R46 (ie R16 + R30). The second important element is the word final. In Box 1-2 we distinguished between final goods and intermediate goods and we mentioned that this distinction is very important as far as the measurement of economic activity is concerned. One of the major problems that national accountants have to deal with is the problem of double counting. If they are not careful they can easily overestimate or inflate the value of GDP by counting certain items more than once. Consider the following simple example: t "GBSNFSQSPEVDFT CBHTPGXIFBUXIJDIIFTFMMTUPBNJMMFSBU3QFSCBH ZJFMEJOHBUPUBMPG3 t 5IFNJMMFSQSPDFTTFTUIFXIFBUJOUPnPVS XIJDIIFUIFOTFMMTUPBCBLFSGPS3 t "GUFSCBLJOHCSFBEXJUIUIFnPVS UIFCBLFSTFMMTJUUPBTIPQGPS3 t 5IFTIPQTVCTFRVFOUMZTFMMTUIFCSFBEUPmOBMDPOTVNFSTGPS3 What is the total value of these four transactions? A spontaneous reaction to this question will probably be to add the value of all the sales together. This gives BO BOTXFS PG 3 JF 3 ù ù 3 ù ù 3 ù ù TABLE 13-1 Calculating value added: a simple 3 TFF UIF mSTU DPMVNO PG 5BCMF #VU UIJT JT DMFBSMZ example of the production and XSPOH5IFUPUBMWBMVFPGUIFGBSNFSTQSPEVDUJPODBOOPUCFBEEFE distribution of bread UPUIFUPUBMWBMVFPGUIFNJMMFSTTBMFTUPUIFCBLFS TJODFUIFWBMVF of the production of the wheat is included in the value of the flour Participant Value of sales Value added sold by the miller. The same applies to the value of the bread. To avoid the problem of double counting, the national accountants Farmer R10 000 R10 000 use a concept which became familiar to most South Africans Miller 12 500 2 500 with the introduction of value-added tax (VAT) on 30 September Baker 18 000 5 500 1991. Starting with the full value of the farmer’s production they Shopkeeper 21 000 3 000 ––––––– ––––––– subsequently add only the value added by each of the other R61 500 R21 000 participants in the production process. This is summarised in the last column of Table 13-1. Nowadays GDP measured from the CH A P T ER 13 M E A S U RING THE PE RF ORM ANCE OF THE ECONOMY

235

production side is called gross value added (GVA). One way of avoiding double counting is therefore to count, in each transaction, only the value added (ie the addition to the value of the output). In our example this yields an answer of R21 000.

But what has all this got to do with the adjective final in the definition of GDP? In our example the value of the shop’s sales to the final consumers also amounts to R21 000. The fact that this is exactly equal to the total value added is no accident. Double counting can also be avoided by only counting the value of those sales where a good or service reaches its final destination. Such sales involve final goods and services which have to be distinguished from intermediate goods and services. As explained in Box 1-2, any good or service that is purchased for reselling or processing is regarded as an intermediate good or service. Intermediate goods and services do not form part of GDP. Thus, in our example the national accountants will ignore the sales of the farmer to the miller as well as those of the miller to the baker and of the baker to the shopkeeper. Note, however, that it is the ultimate use of a product which determines whether it is a final or an intermediate product. If the flour in the above example is bought by consumers, it would be classified as a final good. Moreover, if the flour is not sold during the period in question it becomes part of the miller’s inventories, which form part of investment in the national accounts. There is another way in which double counting can be avoided. That is by considering only the incomes earned during the various stages of the production process by the owners of the factors of production. In our example R10 000 is earned during the farming stage, R2 500 (ie R12 500 minus R10 000) during the milling stage, R5 500 (ie R18 000 minus R12 500) during the baking stage, and R3 000 (ie R21 000 minus R18 000) during the final selling stage. This again yields a total of R21 000 (R10 000+R2 500+R5 500+R3 000). Note, in addition, that the income earned during each stage of the production process is equal to the value added during that stage. This is also no accident. As emphasised in Section 3.4, income is earned by producing, that is, by adding value to goods and services. For the economy as a whole, income can be increased only if production increases (ie if more value is added). The fact that value added, spending on final goods and income all yield the same answer means that there are three different ways of calculating GDP. These three methods measure the same phenomenon and must necessarily all yield the same answer. In this regard it is useful to recall Figures 3-1 and 3-2 in Chapter 3, which emphasise how production, income and spending are linked in the economy.

Three methods of calculating GDP The three methods of calculating GDP illustrated in the example are t UIFproduction method (value added) t UIFexpenditure method (final goods and services) t UIFincome method (incomes of the factors of production) 8IZEPUIFZZJFMEUIFTBNFBOTXFS 5IFWBMVFPGmOBMHPPETBOETFSWJDFTNVTUOFDFTTBSJMZCFNBEFVQPGUIF successive values added in the different stages of production. In addition, production and income can be viewed as two sides of the same coin. Production is the source of income – the only way in which income can be generated JOBOFDPOPNZJTCZQSPEVDJOH BOETFMMJOH HPPETBOETFSWJDFT "TFYQMBJOFEJO$IBQUFS UIFJODPNFFBSOFECZUIFWBSJPVTGBDUPSTPGQSPEVDUJPO MBCPVS DBQJUBM OBUVSBMSFTPVSDFT BOEFOUSFQSFOFVSTIJQ DPOTJTUTPGXBHFTBOETBMBSJFT JOUFSFTU SFOUBOEQSPmU5IFUPUBMWBMVFPGQSPEVDUJPOJOUIF FDPOPNZXJMMUIFSFGPSFCFFRVBMUPUIFUPUBMWBMVFPGXBHFTBOETBMBSJFT JOUFSFTU SFOUBOEQSPmU The equality between production, income and expenditure can also be explained in terms of the circular flows discussed in Chapter 3, where we saw that production requires factors of production (purchased in the factor markets). The reward of the factors of production constitutes the income that is used to purchase the production on the goods markets. In other words, the three methods essentially measure the same thing, albeit at different points in the circular flow. 5IFBDUVBMNFBTVSFNFOUPG(%1JT PGDPVSTF JOmOJUFMZNPSFDPNQMFYUIBOPVSTJNQMFFYBNQMF*GZPVUIJOLIPX EJGmDVMUJUJTUPDPOTUSVDUBTFUPGBDDPVOUTGPSBOJOEJWJEVBMVOEFSUBLJOH ZPVDBOJNBHJOFIPXDPNQMJDBUFEJUNVTU be to estimate the value of the total production of goods and services in a country in a particular year. Fortunately, the fact that there are three ways of calculating GDP serves to improve the accuracy with which it is measured. The national accountants use all three methods or approaches and have to arrive at the same answer. In other words, the national accounts have to balance, just as any other set of accounts has to balance. *OPVSFYBNQMFXFIBWFBMSFBEZTIPXOUIBUQSPEVDUJPO PSWBMVFBEEFE FRVBMTTQFOEJOHPOmOBMHPPETBOE services. We shall now expand on this simple example to illustrate that the production, expenditure and income approaches all yield the same answer. 5IFWBMVFUIFCBLFSBEETUPUIFmOBMQSPEVDU CSFBE BNPVOUTUP3 3 ùoù3 ùù3 5PCFBCMF UPQSPEVDFUIJTBEEFEWBMVF UIFCBLFSIBTUPFNQMPZDFSUBJOGBDUPSTPGQSPEVDUJPO QSJNBSZJOQVUT 4VQQPTFUIF values of these inputs are as follows: 236

C HA P T E R 1 3 MEA SURI NG THE PERFORMA NCE OF THE E CON OM Y

Wages and salaries Rentals (buildings) Interest on loans

R2 500 1 000 500

Total

R4 000

5IJTNFBOTUIBUUIFCBLFSTFOUSFQSFOFVSJBMQSPmU UIBUJT UIFEJGGFSFODFCf*ckFFOIJTSFWFOVFBOEIJTQBZNFOUT UPUIFPUIFSGBDUPSTPGQSPEVDUJPO IBTUPCF3 1SPmUJODMVEFTUIFDPNQFOTBUJPOGPSUIFFOUSFQSFOFVSTPXO MBCPVS5IFTFMMJOHQSJDFPGUIFCBLFS 3 JTUIFSFGPSFBQQPSUJPOFEBTGPMMPXT Primary inputs Wages and salaries Rentals Interest Profit

R2 500 1 000 500 1 500

Secondary inputs Intermediate goods and services (flour) Total

R12 500 R18 000

/PUFUIBUUIFWBMVFPGUIFCBLFSTJOUFSNFEJBUFHPPETBOETFSWJDFTJTUIFTBNFBTUIFWBMVFPGUIFNJMMFSTTBMFT 5IJTBNPVOUPG3 DBOUIFSFGPSF BTJOUIFDBTFPGUIF3 BCPWF CFBQQPSUJPOFECf*ckFFOQSJNBSZBOE TFDPOEBSZ JOQVUT *O UIJT XBZ BMM TBMFT 3 JO UIF DIBJO DBO CF BQQPSUJPOFE UP UIF QBZNFOU GPS GBDUPST PG QSPEVDUJPO QSJNBSZ JOQVUT PO UIF POF IBOE BOE JOUFSNFEJBUF HPPET BOE TFSWJDFT TFDPOEBSZ JOQVUT PO UIF other. In the statement set out at the bottom of the page it is assumed, somewhat unrealistically, that the farmer IBTCPVHIUOPJOUFSNFEJBUFHPPETPSTFSWJDFT/PUFBMTPUIBUUIFFOUSFQSFOFVSJBMQSPmUJTUSFBUFEBTBCBMBODJOH BNPVOU SFTJEVBMJUFN UISPVHIPVU The following equality may be derived for the economy as a whole: Value of total sales

=

total primary income (wages and salaries, rent, interest and profit)

+

value of intermediate goods and services

(R61 500)

=

(R21 000)

+

(R40 500)

The following will also apply: Value of total sales

value of = intermediate goods and services

total primary income

4JODFUIFMFGUIBOETJEFPGUIJTFRVBUJPOJTBMTPFRVBMUPUIFWBMVFPGBMMmOBMHPPETBOETFSWJDFT BOEUIFWBMVFPG total primary income is synonymous with the total income in the economy, the following will also be true: The value of final goods and services=total income It should therefore be clear that output expressed in monetar y terms must be equal to the total monetar y income derived from it. As mentioned earlier, production (or output) and income are simply two sides of the same coin.

Further aspects of the definition of GDP Recall that GDP was defined as the total value of all final goods and services produced within the boundaries of a countr y during a particular period (usually one year). Two elements of this definition have now been explained: the meaning of value and the meaning of final goods and services. Two further aspects need to be highlighted. The first is the term “within the boundaries of a country”. In some definitions this term is replaced by “in the economy”. The important point is that GDP is a geographic concept that includes all the production within the Value of sales

Payment for factors of production (primary inputs)

Value of intermediate goods and services

Farmer Miller Baker Shopkeeper

R10 000 R12 500 R18 000 R21 000

R10 000 R2 500 R5 500 R3 000

R– R10 000 R12 500 R18 000

Total

R61 500

R21 000

R40 500

CH A P T ER 13 M E A S U RING THE PE RF ORM ANCE OF THE ECONOMY

237

geographic area of a country. This is what is signified by the term domestic in gross domestic product. We shall return to this aspect when other measures of economic activity are discussed. A further important aspect to note is that only goods and services produced during a particular period are included in GDP. GDP therefore concerns the production of new goods and services (also called current production) during a specific period. Goods produced during earlier periods and sold during the period under consideration are not included in GDP for the latter period. Moreover, the resale of existing goods such as houses or motorcars is also not part of GDP. GDP reflects only production which occurred during the period in question. Also note that GDP is a flow which can be measured only over a period of time (usually one year). In our discussion of the measurement of GDP we emphasised that production and income are two sides of the same coin. This means that “income” can be substituted for the “product” in GDP. Gross domestic product is therefore the same as gross domestic income. As mentioned earlier, GDP from the production side is also called gross value added (GVA) in the national accounts. One element of GDP that has not yet been explained is the word gross. The description of total output as gross product means that no provision has been made for that part of a country’s capital equipment (buildings, roads, machinery, tools, etc) which is “used up” in the production process. During the period for which GDP is calculated, obsolescence and wear and tear cause capital equipment to depreciate. Provision should therefore be made for such depreciation and this provision should be subtracted from the value of output. Subtracting the provision for depreciation (also called consumption of fixed capital) from the gross total, changes it to a net total. The net amount is a more correct measure of economic performance since it adjusts gross production for the decrease in the value of capital goods. In practice, however, the gross measure is used more often than the net measure. One of the reasons for using the gross measure is the fact that depreciation is difficult to estimate. For example, it is difficult to determine by how much diverse assets such as buildings, tractors, machines and computers depreciated during a particular period. The fact that depreciation is often ignored when measuring economic growth does not mean that it is an unimportant element of the national accounts. It is important because it shows what proportion of the total output should actually be saved in order to maintain the economy’s production capacity at the same level. In 2013 consumption of fixed capital constituted more than 13 per cent of South African GDP. Depreciation is therefore clearly significant.

Measurement at market prices, basic prices and factor cost (or income) The three methods of calculating GDP will yield the same result only if the same set of prices is used in all the calculations. There are, however, three sets of prices that can be used to calculate GDP, namely market prices, basic prices and factor cost (or factor income). In practice, market prices are used when calculating GDP according to the expenditure method, while basic prices are used when the production (or value added) method is applied. Factor cost (or factor income) is used when the income method is followed. Different valuations of GDP will thus yield different results and you should therefore always check at which prices GDP is expressed. The differences between market prices, basic prices and factor cost (or factor income) are due to various taxes and subsidies on goods and services. When there are indirect taxes (ie taxes on production and products) or subsidies (on production or products) the amount paid for a good or service differs from both the cost of production and the income earned by the relevant factors of production. For example, the amount paid by a consumer for a packet of cigarettes is much higher than the combined income earned by the merchant, the manufacturer, the workers, the tobacco farmer and everyone else involved in the process of producing and selling the packet of cigarettes. The difference is the result of excise duty and value-added tax (VAT), which together constitute almost 50 per cent of the market price of a packet of cigarettes in South Africa. Indirect taxes (ie taxes on production and products) thus have the effect of making the market prices of goods and services higher than their basic prices or factor cost. Subsidies have just the opposite effect. They result in market prices being lower than basic prices or factor cost. For example, for many years there was a subsidy on bread in South Africa, which kept the market price of a loaf of bread below the cost of producing it. Certain suburban transport services and certain exports are still subsidised. The national accountants distinguish between two types of tax and subsidy on production and products. They distinguish between taxes on products and other taxes on production. Likewise, they distinguish between subsidies on products and other subsidies on production. Taxes on products refer to taxes which are payable per unit of some good or service (eg value-added tax, taxes and duties on imports and taxes on exports). Other taxes on production refer to taxes on production that are not linked to specific goods or services (eg payroll taxes, recurring taxes on land, buildings or other structures and business and professional licences). Subsidies on products include direct subsidies payable per unit exported to encourage exports, and product-linked 238

C HA P T E R 1 3 MEA SURI NG THE PERFORMA NCE OF THE E CON OM Y

subsidies on products used domestically. Other subsidies on production refer to subsidies that are not linked to specific goods or services (eg subsidies on employment, passenger transport or the payroll). The following identities apply: tù(%1BUNBSLFUQSJDFToUBYFTPOQSPEVDUT TVCTJEJFTPOQSPEVDUT{ GDP at basic prices tù(%1BUCBTJDQSJDFToPUIFSUBYFTPOQSPEVDUJPO PUIFSTVCTJEJFTPOQSPEVDUJPO{ GDP at factor cost (or factor income) Likewise: tù(%1BUGBDUPSDPTU PUIFSUBYFTPOQSPEVDUJPOoPUIFSTVCTJEJFTPOQSPEVDUJPO{ GDP at basic prices tù(%1BUCBTJDQSJDFT UBYFTPOQSPEVDUToTVCTJEJFTPOQSPEVDUT{ GDP at market prices

Measurement at current prices and at constant prices Another important distinction that needs to be made is that between GDP at current prices (or nominal GDP) and GDP at constant prices (or real GDP). When GDP is measured for a particular period, the prices ruling during that period have to be used. For example, when they calculated the GDP for 2013 the national accountants had to use the prices paid for the various goods and services in 2013. We call this measurement at current prices or in nominal terms (see Box 13-1). However, we are not only interested in the size of GDP during a particular period. We also want to know what happened to GDP from one period to the next. We want to know, for example, how the 2013 GDP compared with the GDP for 2012. Recall, from Section 13.1, that the growth in economic activity is one of the major macroeconomic objectives. This can be measured by calculating the percentage change in GDP from one year to the next. But in a world in which prices tend to increase from one period to the next (ie a world of inflation), it makes little sense to simply compare monetary values between different years. We have to allow for the fact that prices may have increased. For example, in 2013 the South African GDP at current market prices was 7,8 per cent higher than in 2012. But this did not mean that the actual production of goods and services was 7,8 per cent greater in

BOX 13-1 NOMINAL VALUES, REAL VALUES AND PURCHASING POWER In a world in which prices are changing it is essential to distinguish between nominal values and real values. You will encounter this crucial distinction at numerous places in the rest of the book, and you will therefore make things far easier for yourself if you make sure, now, that you understand the difference between the two terms. The distinction between nominal and real is quite easy to understand. Consider the following questions: tù%BOJF,PU[FFBSOFEBTBMBSZPG3QFSNPOUIJO4JQIP.BTIFHPFBSOFEBTBMBSZPG3QFS NPOUIJO"SFUIFTf*ckPTBMBSJFTUIFTBNF tù$ISJT.FJSJOHQBJE3 GPSBOFXDNDPMPVSUFMFWJTJPOTFUJO,SJTI/BJEPPQBJE3 GPSBOFX DNDPMPVSUFMFWJTJPOTFUJO%JEUIFZQBZUIFTBNFBNPVOU In both cases the answer is yes and no. Nominally JFJONPOFUBSZPSSBOEUFSNT %BOJFBOE4JQIPFBSOFEUIF TBNFTBMBSZBOE$ISJTBOE,SJTIQBJEUIFTBNFBNPVOUGPSUIF57TFU*Oreal terms, however, (ie bearing in NJOEUIFJOnBUJPOEVSJOHUIJTQFSJPE %BOJFFBSOFENPSFUIBO4JQIPBOE$ISJTQBJENPSFUIBO,SJTI*OPUIFS words, although the amounts concerned are the same in rand or monetary terms, they actually differ because the value (or purchasing power) of money changes over time. Nominal means “in terms of the name”. The nominal value of something is therefore its face value. In our FYBNQMFTUIFOPNJOBMWBMVFTPGUIFTBMBSJFTBOEQSJDFTPG57TFUTBSFFYQSFTTFEJOSBOE/PNJOBMWBMVFTBSF therefore also called monetary values. Real means “actual” or “essential”. The real value of a salary therefore refers to its actual or essential value in terms of what it can buy. We call this the purchasing power of the salary. In the same way, the real value PGUIFQSJDFPGB57TFUSFGFSTUPUIFBDUVBMQVSDIBTJOHQPXFSSFRVJSFEUPCVZUIF57TFU Take a fifty-rand note. What is the nominal value of the note? Can it change? The nominal value of the note is fifty rand and it cannot change. The face value of the note cannot change. What is the real value of the note? Can the real value change? The real value of the note depends on the prices of goods and services, that is on IPXNVDIJUDBOQVSDIBTF"TQSJDFTJODSFBTF UIFSFBMWBMVFPSQVSDIBTJOHQPXFSPGUIFOPUFEFDSFBTFT5IF real value of the note can therefore change. The difference between nominal and real values will be explained further once the consumer price index has CFFOFYQMBJOFEoTFF#PY

CH A P T ER 13 M E A S U RING THE PE RF ORM ANCE OF THE ECONOMY

239

BOX 13-2 NOMINAL AND REAL GDP: A SIMPLE EXAMPLE 8FDBOVTFBTJNQMFFYBNQMFUPJMMVTUSBUFUIFEJGGFSFODFCf*ckFFOOPNJOBM(%1 JF(%1BUDVSSFOUQSJDFT BOE SFBM(%1 JF(%1BUDPOTUBOUQSJDFT 4VQQPTF UIBU POMZ UISFF HPPET BSF QSPEVDFE JO B QBSUJDVMBS FDPOPNZ BQQMFT CBOBOBT BOE PSBOHFT *O BQQMFTXFSFQSPEVDFEBOETPMEBUDFOUTFBDI CBOBOBTXFSFQSPEVDFEBOETPMEBU DFOUTFBDI BOEPSBOHFTXFSFQSPEVDFEBOETPMEBUDFOUTFBDI 5IF UPUBM WBMVF PG QSPEVDUJPO JO XBT UIVT ù uù 3 ù ù ù uù 3 ù ù uù 3 ù 3ù ù3ù ù3ùù3 *O BQQMFT XFSF QSPEVDFE BOE TPME BU 3 FBDI CBOBOBT XFSF QSPEVDFE BOE TPME BU DFOUT FBDI BOE PSBOHFT XFSF QSPEVDFE BOE TPME BU DFOUT FBDI 5IF UPUBM WBMVF PG QSPEVDUJPO JOXBTUIVT u3 u3 u3 3 3 33 5IJTXBTTJHOJmDBOUMZIJHIFSUIBOUIF3SFDPSEFEGPS*OQFSDFOUBHFUFSNTUIFJODSFBTFXBT QFSDFOU#VUUIF3BOE3BSFCPUInominal values. Current prices were used to value the production in each year. %JEUIFQSPEVDUJPOBDUVBMMZJODSFBTF 8IBUIBQQFOFEUPUIFrealQSPEVDUJPO 5PBOTXFSUIJTRVFTUJPOXF must measure the production in both years at the same prices. In this way we eliminate the effect of price increases. 8FDBOEPUIJTCZVTJOHBTUIFCBTFZFBSBOEVTJOHQSJDFTUPPCUBJOUIFWBMVFPGQSPEVDUJPO JO BU DPOTUBOU QSJDFT #Z EPJOH UIJT XF mOE UIBU UIF UPUBM WBMVF PG QSPEVDUJPO JO XBT ùuù3 ù ù ùuù3 ù ù ùuù3 ùù3ù ù3ù ù3ùù3*OPUIFSXPSET XFVTFUIF QSJDFTPGBMPOHXJUIUIFRVBOUJUJFTPGUPEFUFSNJOFreal(%1 PS(%1BUconstant prices JO 8FOPXTFFUIBUUIFBDUVBMJODSFBTFJOUIFWBMVFPGQSPEVDUJPOXBTUIFEJGGFSFODFCf*ckFFO3 BOE 3 5IJTSFQSFTFOUTBOJODSFBTFPG QFSDFOU5IJTXBTUIFreal increase in production between BOE The calculations above can be summarised as follows: Nominal GDP in 2005 BQQMFTBUD ù3 CBOBOBTBUD ù3 PSBOHFTBUD ù3 ––––– 3

Nominal GDP in 2013 BQQMFTBU3 ù3 CBOBOBTBUD ùù3 PSBOHFTBUD ùù3 ––––– 3

Real GDP in 2013 (at 2005 prices) BQQMFTBUD ù3 CBOBOBTBUD ù3 PSBOHFTBUD ù3 ––––– 3

Increase in nominal GDPbetween 2005 and 201 3 28 0 < 1 45 1 00 1 35 1 00 = = 93 ,1 per cent 1 45 1 1 45 1 Increase in real GDP between 2005 and 201 3 1 55 < 1 45 1 00 1 0 1 00 = = 6,9 per cent 1 45 1 1 45 1

2013 than in 2012. The largest part of this increase simply reflected the fact that most prices were higher in 2013 than in 2012. To solve this problem, the national accountants at Stats SA and the SARB convert GDP at current prices to GDP at constant prices (or real GDP – see Box 13-2). This is done by valuing all the goods and ser-vices produced each year in terms of the prices ruling in a certain year, called the base year. At the time of writing, 2005 was the base year used by Stats SA and the SARB. In other words, each year’s GDP was also expressed at 2005 prices. This is what we mean when we talk about GDP at constant prices or real GDP. Once this adjustment had been made, the national accountants found that the South African GDP was 1,9 per DFOUHSFBUFSJOUIBOJO5IFHSPXUIJO(%1BUDPOTUBOUQSJDFT PSSFBM(%1 XBTUIFSFGPSFPOMZ QFS DFOU5IFEJGGFSFODFCf*ckFFOUIJTSBUFBOEUIF QFSDFOUHSPXUIJO(%1BUDVSSFOUQSJDFT PSOPNJOBM(%1 XBT UIFSFTVMUPGQSJDFJODSFBTFT JFJOnBUJPO 5IFmSTUUXPDPMVNOTPG5BCMFTIPX4PVUI"GSJDBO(%1BUDVSSFOUQSJDFTBOEBUDPOTUBOU QSJDFTGPS UIFQFSJPEUP/PUFUIBUUIF(%1BUDVSSFOUQSJDFTJTMPXFSUIBOUIF(%1BUDPOTUBOUQSJDFTJOUIFZFBST prior to the base year. In the base year the two values are equal, since the same prices are used in both instances. After the base year, the current price values exceed the constant price values. 240

C HA P T E R 1 3 MEA SURI NG THE PERFORMA NCE OF THE E CON OM Y

The table also shows the growth rates in nominal GDP and real GDP in the third and fourth columns respectively. (SPXUISBUFTGPSDBOOPUCFDBMDVMBUFEGSPNUIFEBUBJOUIFUBCMF /PUFUIF QFSDFOUBOE QFSDFOU referred to above. "TZPVNJHIUJNBHJOF UIFUSBOTGPSNBUJPOPG(%1BUDVSSFOUQSJDFT OPNJOBM(%1 UP(%1BUDPOTUBOUQSJDFT SFBM (%1 JTBDPNQMJDBUFEQSPDFTT*UJTOPUOFDFTTBSZGPSVTUPHPJOUPBOZEFUBJMTPGUIFQSPDFTT8IBUJTJNQPSUBOU however, is to understand the difference between the two concepts. You will come across the difference between OPNJOBMBOESFBMWBSJBCMFTPOBOVNCFSPGPDDBTJPOTJOUIFSFTUPGUIJTCPPL*OBXPSMEPGJOnBUJPOBMMWBMVFT OPU POMZ(%1 IBWFUPCFFYQSFTTFEJOOPNJOBMBOESFBMUFSNT0UIFSXJTFZPVDBOFBTJMZSFBDIXSPOHDPODMVTJPOT when comparisons are made. Some additional problems relating to the measurement and interpretation of GDP are discussed in Chapter 22.

13.3 Other measures of production, income and expenditure In this section we introduce some other measures of aggregate economic activity. While GDP is undoubtedly the most widely used barometer of total production in an economy in a particular year, the other measures also have TQFDJmDVTFT0VSFYQMBOBUJPOPGUIFTFPUIFSNFBTVSFTXJMMIFMQUPGVSUIFSDMBSJGZTPNFBTQFDUTPG(%1

Gross national income or gross national product As mentioned earlier, GDP is a geographic concept – the adjective domestic indicates that we are dealing with what occurred within the boundaries of the country. It does not matter who produces the goods or who owns the factors of production. It could be a German, Chinese or any other firm. Nor does it matter to whom the goods are sold. They could be sold locally or exported to another country. As long as the production takes place on South African soil it forms part of South African GDP. But economists also want to know what happens to the income earned and standard of living of all South African citizens or permanent residents in the country. To answer this question, all income earned by foreignowned factors of production in South Africa has to be subtracted from GDP. In this way the South African element of GDP can be ascertained. In addition, all income earned by South African factors of production in the rest of the world also has to be taken into account. Once these adjustments have been made, we have an indication of the national income, that is, the income of all permanent residents of the country. This is called the gross national income (GNI), which equals the gross national product (GNP). To derive GNI from GDP the following must therefore be done: TABLE 13-2 GDP at current prices and constant prices and nominal and real growth, 2000–2013 Annual growth in GDP (%)

Year

GDP at current prices (R millions)

GDP at constant (2005) prices (R millions)

Nominal

Real

2000 2001

922 148 1 020 007

1 301 773 1 337 382

– 10,6

– 2,7

2002

1 171 086

1 386 435

14,8

3,7

2003

1 272 537

1 427 322

8,7

2,9

2004

1 415 273

1 492 330

11,2

4,6

2005

1 571 082

1 571 082

11,0

5,3

2006

1 767 422

1 659 121

12,5

5,6

2007

2 016 185

1 751 165

14,1

5,5

2008

2 256 485

1 814 594

11,9

3,6

2009

2 408 075

1 786 900

6,7

–1,5

2010

2 673 772

1 843 008

11,0

3,1

2011 2012

2 932 730 3 138 980

1 909 343 1 956 444

9,7 7,0

3,6 2,5

2013

3 385 369

1 993 433

7,8

1,9

rce

ou

rican

eser e an

Q

arc 2010

arc 2014

CH A P T ER 13 M E A S U RING THE PE RF ORM ANCE OF THE ECONOMY

241

Subtract from GDP: t BMMQSPmUT EJWJEFOET JOUFSFTUBOEPUIFSJODPNFGSPNEPNFTUJDJOWFTUNFOUXIJDIBDDSVFUPSFTJEFOUTPGPUIFS DPVOUSJFT FHUIFQSPmUTFBSOFEJO4PVUI"GSJDBCZGPSFJHOPXOFSTPGDPNQBOJFTTVDIBT-FWFS#SPUIFST $PMHBUF 1BMNPMJWFPS#.8BOEUIFJOUFSFTUQBJECZ4PVUI"GSJDBOTUPGPSFJHOMFOEFST t BMMXBHFTBOETBMBSJFTPGGPSFJHOXPSLFSTFOHBHFEJOEPNFTUJDQSPEVDUJPO FHUIFXBHFTFBSOFECZSFTJEFOUTPG -FTPUIP .P[BNCJRVFBOE.BMBXJPO4PVUI"GSJDBONJOFT

Add to GDP: t BMMQSPmUT EJWJEFOET JOUFSFTUBOEPUIFSJODPNFGSPNJOWFTUNFOUTBCSPBEXIJDIBDDSVFUPQFSNBOFOUSFTJEFOUT FHUIFQSPmUTFBSOFECZB4PVUI"GSJDBODPOTUSVDUJPODPNQBOZUIBUCVJMETSPBETJOUIFSFTUPG"GSJDBBOEUIF EJWJEFOETFBSOFECZ4PVUI"GSJDBOPXOFSTPGTIBSFTJOGPSFJHODPNQBOJFTTVDIBT.JDSPTPGUBOE8BM.BSU

t BMMXBHFTBOETBMBSJFTFBSOFECZQFSNBOFOUSFTJEFOUTPVUTJEF4PVUI"GSJDB FHUIFJODPNFFBSOFECZ4PVUI "GSJDBOTXPSLJOHJO#SJUBJO

In the case of South Africa, foreign involvement in the domestic economy has always been larger than the involvement by South African factors of production in the rest of the world. In technical terms we say that the country’s primar y income payments to the rest of the world (ie the remuneration of foreign-owned factors of production in our eco-nomy) exceed our primar y income receipts (ie the remuneration earned by South African factors of production in the rest of the world). South Africa’s GNI has therefore always been smaller than its GDP. For example, in 2013 South Africa’s GNI was R3 314 billion while the GDP was R3 385 billion. Net primary income payments to the rest of the world amounted to R71 billion. Formally: GNI= GDP+primary income receipts – primary income payments or (since payments are larger) GNI= GDP–net primary income payments to the rest of the world where net primary income payments GNI= primary income payments–primary income receipts In some countries GNI is larger than GDP. Take Lesotho, for example. Lesotho is a small, landlocked, mountainous country. Production in Lesotho is limited. Most citizens of Lesotho work in South Africa, particularly on the mines. -FTPUIPT(/*JTUIVTHSFBUFSUIBOJUT(%1*ODFSUBJOJOEVTUSJBMDPVOUSJFTXIJDIJOWFTUIFBWJMZBCSPBE MJLFUIF United States, the United Kingdom and Germany, GNI is also usually larger than GDP. Economists use both GDP and GNI (or GNP) when measuring or analysing the state of the economy. GDP is the best measure of the level of economic activity in the country and of the potential for creating jobs for the country’s residents. Economic growth is therefore usually measured by calculating the percentage change in real GDP from one year to the next. GNI, on the other hand, is a better measure of the income or standard of living of the citizens of a country. If we want to know how South Africans as a group are faring, we therefore examine the level and rate of change in real GNI (or GNP).

Expenditure on GDP In Section 13.2 we explained that there are three approaches to calculating GDP: the production approach (which measures the value added by all the participants in the economy), the income approach (which measures the income received by the different factors of production) and the expenditure approach (which measures the spending on final goods and services by the different participants). With the expenditure approach, the national accountants add together the spending of the four major sectors of UIFFDPOPNZIPVTFIPMET mSNT HPWFSONFOUBOEGPSFJHOTFDUPS:PVMFBSOUBCPVUUIFFMFNFOUTPGUPUBMTQFOEJOH JO$IBQUFS3FDBMMUIBUUIFZBSF t DPOTVNQUJPOFYQFOEJUVSFCZIPVTFIPMET C) t JOWFTUNFOUTQFOEJOH PSDBQJUBMGPSNBUJPO CZmSNT I) t HPWFSONFOUTQFOEJOH G) t FYQFOEJUVSFPOFYQPSUT X) minus expenditure on imports (Z)

242

C HA P T E R 1 3 MEA SURI NG THE PERFORMA NCE OF THE E CON OM Y

TABLE 13-3 Composition of expenditure on GDP in South Africa, 2013 R millions Final consumption expenditure by households (C) Gross capital formation (I) Final consumption expenditure by general government (G) Residual item Exports of goods and services (X) minus Imports of goods and services (Z)

In symbols we can therefore write: GDP=expenditure on GDP GDP=C+I+G+X–Z

The composition of expenditure on GDP in South Africa in JT TIPXO JO 5BCMF &YQFOEJUVSF PO (%1 JT BMXBZT WBMVFE BU NBSLFU QSJDFT /PUF UIBU UIF QVCMJTIFE mHVSFT EP not conform precisely with the equation above. For example, 752 781 JOWFTUNFOU TQFOEJOH DBMMFE DBQJUBM GPSNBUJPO JO UIF OBUJPOBM 14 360 BDDPVOUT JODMVEFTTQFOEJOHCZCPUImSNTBOEUIFHPWFSONFOU 1 054 353 XIJMF HPWFSONFOU TQFOEJOH QFSUBJOT UP mOBM DPOTVNQUJPO –1 149 542 –––––––– expenditure only. However, to link up with the macroeconomic Total 3 385 369 theory explained in later chapters, we use the above equation throughout this book. Source: South African Reserve Bank, Quarterly Bulletin, March 2014 From the table it is clear that final consumption expenditure by households is the largest single element of total expenditure in the economy. In the national accounts this is subdivided into spending on durable goods, semi-durable goods, non-durable goods and services – see also Section 3.5 and Box 1-2. In 2013 spending on services represented about 42,3 per cent of private consumption expenditure in South Africa. The shares of the other components were as follows: non-durable goods 41,4 per cent, durable goods 7,4 per cent and semi-durable goods 8,9 per cent. Gross capital formation requires some clarification. By now you know that capital formation or investment refers to additions to the country’s capital stock, that is, the purchase of capital goods. You also know that gross capital formation means that no provision has been made for the consumption of fixed capital. In the national accounts, gross capital formation is subdivided into two components: gross fixed capital formation and changes in inventories. Fixed capital formation refers to the purchase of capital goods like buildings, machinery and equipment, while changes in inventories reflect goods produced during the period that have not been sold, or goods produced in an earlier period but sold only during the current period. Changes in inventories can therefore be positive or negative. They are usually very small in relation to the size of fixed investment. In 2013, for example, gross fixed capital formation amounted to R654 427 million while the change in inventories was R1 092 million. This yielded the gross capital formation of R655 519 million shown in Table 13-3. As can be seen from the table, gross capital formation is much smaller than final consumption expenditure by households. However, as we show in Chapter 17, investment spending is a very important component of total spending in the economy and also the most volatile. The next element of expenditure on GDP is final consumption expenditure by general government. As the name indicates, this does not include capital expenditure (ie investment) by the government. The government’s capital formation is included in gross capital formation. In the national accounts you will also find a relatively small residual item. This item serves merely to balance the national accounts when the three methods discussed in Section 13.2 do not yield exactly the same answer. A substantial portion of the expenditure on South African GDP occurs in the rest of the world. This spending on South African exports has to be added to the other components of spending on GDP. On the other hand, C, I, G and X all contain spending on goods and services not produced in South Africa. Such imports of goods and services therefore have to be subtracted to obtain the total expenditure on South African produced goods and services. Spending on GDP does not include imports, since imports are produced in the rest of the world. Expenditure on GDP includes spending on South African produced goods and ser vices only. As we explain in later chapters, the components of expenditure on GDP play an important role in macroeconomic analysis. 2 057 898 655 519

Gross domestic expenditure (GDE) Expenditure on GDP is always equal to GDP at market prices. It indicates the total value of spending on goods and services produced in the country. However, it does not indicate the total value of spending within the borders of the country. As indicated above, part of the expenditure on South African GDP occurs in the rest of the world while part of the spending in the country is on goods and services produced in the rest of the world. The three central domestic expenditure items (C, I and G) do not distinguish between goods and services manufactured locally and those manufactured in the rest of the world (such as French wine, Italian shoes, Japanese CD players and German machinery). These three items constitute gross domestic expenditure (GDE). Economists are particularly interested in GDE, which indicates the total value of spending within the borders of the country. It includes imports but excludes exports, since spending on exports occurs in the rest of the world. The relationship between GDP (or expenditure on GDP) and GDE is very important and needs to be emphasised. CH A P T ER 13 M E A S U RING THE PE RF ORM ANCE OF THE ECONOMY

243

In symbols we have

Table 13-4 National accounting totals in South Africa in 2013

GDE = C+I+G GDP = C+I+G+(X–Z)

R millions

GDE includes imports (Z) and excludes exports (X), while GDP includes exports (X) and excludes imports (Z). The difference between GDE and GDP is therefore the difference between exports and imports (X – Z). This can be seen clearly by examining the equations for GDE and GDP given above. Incidentally, (X–Z) is often called net exports (NX). The difference between domestic production and domestic expenditure is therefore reflected in the difference between exports and imports. If GDP is greater than GDE for a particlar period, it follows that exports were greater than imports during that period. This is quite logical. If the value of production in the domestic economy exceeded the value of spending within the country, it follows that the value of exports was greater than the value of imports. Thus if GDP>GDE, it follows that X>Z. Similarly, if the value of spending within the country exceeded the value of production within the country, it follows that the value of imports was greater than the value of exports. Thus if GDE>GDP, it follows that Z>X.

Final consumption expenditure by households Gross capital formation Final consumption expenditure by general government Residual item equals Gross domestic expenditure plus Exports of goods and services minus Imports of goods and services equals Gross domestic product at market prices minus Net primary income payments to the rest of the world equals Gross national income at market prices

2 057 898 655 519 752 781 14 360 3 480 558 1 054 353 – 1 149 542 3 385 369

– 71 324 3 314 045

Source: South African Reserve Bank, Quarterly Bulletin, March 2014

A summary of the basic national accounting totals In this subsection we summarise the basic national accounting totals discussed above and show how they are interrelated. We start from the expenditure side. Gross domestic expenditure (GDE) consists of expenditure on final goods and services by households (C), firms (I) and government (G) during a particular period. GDE includes spending on imported goods and services (Z) and excludes exports (X). GDE is expressed at market prices. In symbols we have GDE = C+I+G where C, I and G include imported goods and services. To move from GDE to gross domestic product (GDP) at market prices, that is, the total market value of all the final goods and services produced in the country in the period concerned, imports have to be subtracted from GDE and exports added. In symbols the relationship can be expressed as follows: GDP at market prices=GDE+X–Z GDP at market prices=C+I+G+X–Z To move from GDP at market prices to gross national income (GNI) at market prices, net primary income payments to the rest of the world have to be subtracted from GDP: GNI at market prices=GDP at market prices –net primary income payments 5IFSFMBUJPOTIJQTCf*ckFFOUIFTFOBUJPOBMBDDPVOUJOHDPODFQUTBSFTVNNBSJTFEJO5BCMFXIJDIDPOUBJOTUIF 4PVUI"GSJDBOmHVSFTGPS

13.4 Measuring employment and unemployment We now turn to the second macroeconomic objective, namely full employment. In principle it is quite easy to measure employment and unemployment. To measure employment you simply have to find out how many people have jobs at the time the measurement is done. To measure the number of unemployed persons you simply have to ascertain how many people are willing and able to work but do not have jobs at that time. The number of unemployed persons can then be expressed as a percentage of the total number of people who are willing and able to work. This percentage is called the unemployment rate. In practice, however, total employment and unemployment in the economy are quite difficult to measure.

244

C HA P T E R 1 3 MEA SURI NG THE PERFORMA NCE OF THE E CON OM Y

BOX 13-3 THE INFORMAL SECTOR When economists talk about employment, they usually refer to formal employment, that is, to people who are FNQMPZFEJOBGVMMUJNFDBQBDJUZJOUIFNPEFSOPSGPSNBMTFDUPSPGUIFFDPOPNZ#VUUIJTEPFTOPUNFBOUIBUBMM those members of the labour force who are not formally employed have no income or other means of survival. 4PNFBSFFOHBHFEJOTVCTJTUFODFBHSJDVMUVSFXIJMFPUIFSTBSFFOHBHFEJOUIFJOGPSNBMTFDUPS The informal sector (sometimes also called the shadow economy, unrecorded economy, underground FDPOPNZPSIJEEFOFDPOPNZ IBTPGUFOCFFOJOUIFOFXTEVSJOHUIFQBTUUISFFEFDBEFT"TFDPOPNJDHSPXUI EFDMJOFEBOEGPSNBMFNQMPZNFOUTUBHOBUFEJO4PVUI"GSJDB JODSFBTJOHBUUFOUJPOXBTQBJEUPUIFJOGPSNBMTFDUPS as a source of employment and income. There are primarily three reasons why people engage in informal sector activity: t 5IFZDBOOPUmOEFNQMPZNFOUJOUIFGPSNBMTFDUPS t 5IFZBSFFOHBHFEJOJMMFHBMBDUJWJUJFT t 5IFZEPOPUXBOUUPQBZUBY Informal sector activities Legal/socially acceptable

Illegal/socially unacceptable

Producers 4FMGFNQMPZFEBSUJTBOT TIPFNBLFST dressmakers and tailors, home brewers, craft and curio makers

Producers %BHHB QSPEVDFST DPVOUFSGFJUFST ESVH manufacturers

Distributors )BXLFST nFBNBSLFUUSBEFST QFUUZ traders, carriers, runners, shebeeners

Distributors 1JDLQPDLFUT CVSHMBST SPCCFST FNCF[[MFST confidence tricksters, gamblers, drug traffickers, black marketeers

Services Taxi operators, money lenders, musicians, launderers, repairers, shoeshiners, barbers, photographers, herbalists, traditional healers, backyard mechanics, pawnbrokers

Services Hustlers, pimps, prostitutes, smugglers, bribers, protection racketeers, loan sharks

There is no precise definition of the informal sector, but the table provides a good indication of the activities UIBUBSFJOWPMWFE0QJOJPOTEJGGFSBTUPUIFUPUBMTJ[FBOEUIFJNQPSUBODFPGUIFJOGPSNBMTFDUPS CVUUIFSFJTOP EPVCUUIBUJUIBTHSPXOTJHOJmDBOUMZTJODFUIFT5IBUJTXIZUIF$FOUSBM4UBUJTUJDBM4FSWJDF BT4UBUT4" was formerly known) started estimating employment and income in the informal sector towards the end of the T"OPUIFSTJHOJmDBOUTUFQXBTUBLFOJOXIFOFTUJNBUFTPGJOGPSNBMTFDUPSBDUJWJUZXFSFJODMVEFEJO UIFPGmDJBMOBUJPOBMBDDPVOUTGPSUIFmSTUUJNFoTFFBMTP$IBQUFS &DPOPNJTUT BSHVF BCPVU UIF FDPOPNJD TJHOJmDBODF PG UIF JOGPSNBM TFDUPS 4PNF SFHBSE JU BT B TVSWJWBM sector where people who cannot find formal employment can find legal or illegal means of survival. They UIFSFGPSFSFHBSEUIFHSPXUIPGUIFJOGPSNBMTFDUPSBTBTZNQUPNPGBTUBHOBUJOHPSEFDMJOJOHFDPOPNZ"T far as economic policy is concerned, they believe this stagnation can be overcome by stimulating formal sector activity. Others regard the informal sector as an important source of income and employment creation. Free marketeers, for example, favour the stimulation of the informal sector by abolishing all laws, rules and regulations that could possibly suppress initiative and economic activity. The pragmatic view is that the informal sector essentially represents a means of survival but that it cannot be neglected by policymakers. It should be HJWFOBMMQPTTJCMFTDPQF FTQFDJBMMZJOWJFXPG4PVUI"GSJDBTQFSWBTJWFQPWFSUZBOEUIFJOBCJMJUZPGUIFGPSNBM sector to create enough jobs for the growing labour force.

CH A P T ER 13 M E A S U RING THE PE RF ORM ANCE OF THE ECONOMY

245

When exactly is a person employed? What about part-time or seasonal workers? Are housewives employed or unemployed? When is a person unemployed? What about someone who does not have a job but is also not actively seeking work? What about people who are making a living by selling things on the pavement or from illegal activities like prostitution and dealing in drugs? (See Box 13-3.)These are but some of the problems that government agencies or private researchers are faced with when trying to estimate total employment and unemployment in the economy. 0OBDDPVOUPGBMMUIFTFQSPCMFNT UIFSFBSf*ckPEFmOJUJPOTPGVOFNQMPZNFOUBstrict definition and an expanded definition5PRVBMJGZBTVOFNQMPZFEBDDPSEJOHUPUIFTUSJDUEFmOJUJPO BQFSTPOIBTUPIBWFUBLFOTUFQTSFDFOUMZ UP mOE XPSL CVU BDDPSEJOH UP UIF FYQBOEFE EFmOJUJPO UIF NFSF EFTJSF UP mOE FNQMPZNFOU JT TVGmDJFOU 5IF EJGGFSFODFCf*ckFFOUIf*ckPEFmOJUJPOTJTEJTDVTTFEGVSUIFSJO$IBQUFS In the apartheid era there was a tendency to underestimate unemployment among black workers. As a result, NPTU FDPOPNJTUT SFHBSEFE PGmDJBM FTUJNBUFT PG VOFNQMPZNFOU JO 4PVUI "GSJDB CBTFE PO UIF TUSJDU EFmOJUJPO BTVOSFMJBCMF*OUIFT UIFPGmDJBMEBUBCFDBNFNPSFSFBMJTUJDBOEGPSBTIPSUXIJMFUIFFYQBOEFEEFmOJUJPO XBTVTFEBTUIFPGmDJBMEFmOJUJPO)PXFWFS UIFVOFNQMPZNFOUFTUJNBUFTCBTFEPOUIJTEFmOJUJPOXFSFDSJUJDJTFE BTCFJOHUPPIJHIBOEUIFTUSJDUEFmOJUJPOXBTBHBJOBEPQUFEBTUIFPGmDJBMEFmOJUJPO JOMJOFXJUIJOUFSOBUJPOBM QSBDUJDF %BUBPOVOFNQMPZNFOUJO4PVUI"GSJDBBSFQSPWJEFEJO$IBQUFS%VSJOHUIFUIJSERVBSUFSPG UIFTUSJDUEFmOJUJPOZJFMEFEBOVOFNQMPZNFOUSBUFPG QFSDFOU DPNQBSFEUPUIF QFSDFOUZJFMEFECZUIF FYQBOEFEEFmOJUJPO*SSFTQFDUJWFPGXIJDIEFmOJUJPOJTVTFE VOFNQMPZNFOUJO4PVUI"GSJDBJTWFSZIJHIBOEJT undoubtedly the most important and vexing problem facing the South African economy.

13.5 Measuring prices: the consumer price index Prices and purchasing power The third macroeconomic objective is price stability. As we have mentioned in Section 13.1, economists are interested in what is happening to the prices of goods and services. They want to know what is happening to inflation. They also need information about price movements to be able to distinguish between nominal and real values – recall the discussion of nominal and real GDP. Since World War II most prices in South Africa have increased from year to year. The prices of all goods increased considerably but the prices of different goods increased at different rates. When the prices of goods and services increase, the purchasing power of our income decreases. A South African consumer can purchase much less with R100 today than in 1980, when prices were much lower. In other words the real value (or purchasing power) of R100 is much less today than it was in 1980. Economists want to know what is happening to the purchasing power of the consumer’s rand. But to estimate changes in purchasing power, they have to know what is happening to prices in general. Instead of investigating what is happening to individual prices, we therefore use one of the general or composite price indices compiled and published by Stats SA – see Box 13-4. The best known of these is the consumer price index (CPI). In the remainder of this section we explain the CPI. The producer price index (PPI) and different ways of measuring inflation are explained in Chapter 20.

The consumer price index (CPI) 5IF DPOTVNFS QSJDF JOEFY $1* JT BO JOEFY PG UIF QSJDFT PG B SFQSFTFOUBUJWF iCBTLFUw PG DPOTVNFS HPPET BOE TFSWJDFT5IF$1*UIVTSFQSFTFOUTUIFDPTUPGUIFiTIPQQJOHCBTLFUwPGHPPETBOETFSWJDFTPGBUZQJDBMPSBWFSBHF South African household. In constructing the CPI, Stats SA t TFMFDUTUIFHPPETBOETFSWJDFTUPCFJODMVEFEJOUIFbasket t BTTJHOTBweight to each good or service to indicate its relative importance in the basket t EFDJEFTPOBbase period for calculating the CPI t EFDJEFTPOBformula for calculating the CPI t collects prices each month to calculate the value of the CPI for that month To select the goods and services to be included in the basket and to determine their relative weights, Stats SA conducts a comprehensive, in-depth survey of household income and expenditure in South Africa. The weight allocated to each good or service is based on the relative importance of the item in the average consumer’s budget or “shopping basket”. This requires a lot of time and effort and is therefore only done every few years. The fact that such surveys are not undertaken more regularly is not really a problem, since the pattern of household spending does not change significantly from one year to the next. The base period is then selected. Once the items in the basket and their relative weights have been determined, 246

C HA P T E R 1 3 MEA SURI NG THE PERFORMA NCE OF THE E CON OM Y

BOX 13-4 INDEX NUMBERS "O index number expresses the value of some series in any given period as a percentage of its value in the base period. Economists often use index numbers to express relative changes or to combine different series in an average. To express relative changes they use specific indices and to combine different series they use general or composite indices. To explain a specific index, we use the following table, which contains the average annual price of gold (per mOFPVODF GSPNUPJO64EPMMBST 64% BOEJOSBOE ;"3

Year

USD

ZAR

5IFSFMBUJWFnVDUVBUJPOTJOCPUITFSJFTDBOCFFYQSFTTFEBOEDPNQBSFECFUUFSCZTFUUJOHUIFWBMVFTJO FRVBMUPBOEFYQSFTTJOHUIFPUIFSWBMVFTBTQFSDFOUBHFTPGUIFTFWBMVFT*OUIF64%DPMVNO JT TFUFRVBMUPBOEBMMUIFPUIFSmHVSFTUIFSFGPSFBMTPIBWFUPCFEJWJEFECZBOENVMUJQMJFECZ 5PDPOWFSUUIFSBOEWBMVFT JTTFUFRVBMUPBOEBMMUIFPUIFSmHVSFTBSFBMTPEJWJEFECZBOE NVMUJQMJFECZ5IFSFTVMUTBSFBTGPMMPXT

Year

USD

ZAR

u u u

u u u

8FDBOOPXJNNFEJBUFMZTFF GPSFYBNQMF UIBUUIFBWFSBHFEPMMBSQSJDFPGHPMEXBT QFSDFOUIJHIFSJO UIBOJO XIJMFUIFSBOEQSJDFJODSFBTFECZ QFSDFOUPWFSUIFTBNFQFSJPE In the case of a general or composite index several different series are combined into an average. Each TFSJFT IBT UP CF XFJHIUFE BDDPSEJOH UP JUT SFMBUJWF JNQPSUBODF 5IF CFTULOPXO DPNQPTJUF JOEFY JO 4PVUI "GSJDBJTUIFDPOTVNFSQSJDFJOEFY $1*

XIJDIJTFYQMBJOFEJOUIJTDIBQUFS

BOX 13-5 CONSTRUCTING A PRICE INDEX: A SIMPLE EXAMPLE 4VQQPTFUIBUPOMZUXPHPPET NFBUBOECSFBE BSFDPOTVNFE4VQQPTFGVSUIFSUIBUJUIBTCFFOFTUBCMJTIFE UIBUUIFUZQJDBMPSBWFSBHFDPOTVNFSQVSDIBTFTLHPGNFBUBOEMPBWFTPGCSFBEQFSXFFL JOPUIFSXPSET UIFUZQJDBMDPOTVNFSCBTLFUDPOTJTUTPGLHPGNFBUBOEMPBWFTPGCSFBE*ONFBUDPTU3QFS LJMPHSBNBOECSFBEDPTU3QFSMPBG*ONFBUDPTU3QFSLJMPHSBNBOECSFBE3QFSMPBG#ZIPX NVDIEJEUIFDPTUPGUIFCBTLFU JFUIFXFFLMZDPTUPGMJWJOH JODSFBTFCf*ckFFOBOE 8F mSTU DBMDVMBUF UIF DPTU PG UIF CBTLFU JO 5IF UPUBM DPTU PG UIF CBTLFU JO JT ùuù3 ù ù ùuù3 ùù3ù ù3ùù3 5IFUPUBMDPTUPGUIFTBNFCBTLFUJOJT ùuù3 ù ù ùuù3 ùù3ù ù3ùù3*GXFXFSFUP TFUUIFDPTUPGUIFCBTLFUJO PSUIFDPOTVNFSQSJDFJOEFY FRVBMUP UIFOUIFSFMBUJWFDPTUJO XPVMECFù ùuùùù –––

this information is inserted into a standard price index formula. All that is then required to calculate the CPI are the prices of the goods and services concerned. In Box 13-5 we provide a simple example of how the prices of two goods can be combined into a price index. This example shows, for instance, that the effect of the price of a particular good or service on the price index depends on the weight of the good or service concerned. The CPI is based on the same principle.

CH A P T ER 13 M E A S U RING THE PE RF ORM ANCE OF THE ECONOMY

247

*OUIJTFYBNQMFUIFJODSFBTFJOUIFDPOTVNFSQSJDFJOEFYCf*ckFFOBOEUIVTBNPVOUFEUP QFSDFOU5IFQSJDFPGNFBUJODSFBTFECZ QFSDFOUXIJMFUIFDPTUPGCSFBEJODSFBTFECZQFSDFOU#VU because the value of meat has a greater weight in the consumer basket than the value of bread, the overall increase in the cost of living was closer to the increase in the price of meat than to the increase in the price of bread. This example also illustrates one of the problems of the consumer price index. It represents the cost of a typical basket of goods and services and therefore does not apply to every consumer. In our example a DPOTVNFSXIPQVSDIBTFECSFBEPOMZXPVMEIBWFFYQFSJFODFEBDPTUPGMJWJOHJODSFBTFPGKVTUQFSDFOU OPU QFSDFOU )PXFWFS TJODFUIFDPOTVNFSQSJDFJOEFYDPOUBJOTBMBSHFCBTLFUPGHPPETBOETFSWJDFTo JUFNTJO4PVUI"GSJDBBUUIFUJNFPGXSJUJOHoJUOFWFSUIFMFTTQSPWJEFTBSFBTPOBCMFJOEJDBUJPOPGUIFDPTUPGMJWJOH PGNPTUDPOTVNFST$IBOHFTJOUIF$1*SFnFDUDIBOHFTJOUIFBWFSBHFDPTUPGMJWJOHGBJSMZBDDVSBUFMZ

At the time of writing, the South African CPI was based on a household income and expenditure survey conducted in 2010/11. The total CPI basket consists of 393 different consumer goods and services. These goods and services are classified into more than 40 groups and sub-groups for which separate indices are constructed. In addition, different CPIs are published each month for, inter alia, five expenditure groups, for pensioners, for the nine provinces and for 42 urban areas in South Africa. Separate CPIs are also published for primary and secondary urban areas and for the rural areas. The CPI generally reported in the media is the CPI for all urban areas, also called the headline CPI. Stats SA collects the price information each month (on average about 100 000 prices every month). You will appreciate that the compilation of the CPI for each month takes some time. The CPI for a particular month (which is based on the prices during the first seven days of the month) is therefore usually published during the second half of the following month. 5IFXFJHIUTPGUIFEJGGFSFOUHSPVQTPGHPPETBOETFSWJDFTJODMVEFEJOUIF$1*CBTLFUJO4PVUI"GSJDBJO CBTFEPOUIFTVSWFZ BSFTIPXOJO5BCMF"MTPJODMVEFEBSFUIFWBMVFTPGUIF$1*GPSFBDIHSPVQBT TABLE 13-5 The South African consumer price index (all urban areas), 2012 and 2013 (December 2012 = 100), seasonally adjusted Group

Weight

Goods Food Furniture and equipment Clothing and footwear Transport Alcoholic beverages and tobacco Housing and utilities Recreation and culture Other goods Services Housing and utilities Transport Restaurants and hotels Education Communication Recreation and culture Other services Total

49,86 15,41 2,44 4,07 12,31 5,43 5,21 2,16 2,83 50,14 19,31 4,12 3,50 2,95 2,50 1,93 15,83 100,0

Notes:

Index for

Percentage change

2012

2013

97,8 95,9 99,3 98,5 99,2 98,6 96,0 98,7 n.a. 97,8 97,5 93,7 97,3 98,6 99,8 98,6 n.a. 97,8

102,9 101,4 100,7 101,6 104,8 105,3 103,5 101,2 n.a. 104,0 102,5 102,1 103,8 107,5 101,6 103,2 n.a. 103,4

between 2012 and 2013 5,1 5,7 1,4 3,1 5,6 6,8 7,8 2,5 n.a. 6,3 5,1 9,0 6,7 9,0 1,8 4,7 n.a. 5,7

Because of seasonal adjustment, some of these figures differ slightly from those published by Statistics South Africa. n.a. = not available

Source: South African Reserve Bank, Quarterly Bulletin, March 2014

248

C HA P T E R 1 3 MEA SURI NG THE PERFORMA NCE OF THE E CON OM Y

XFMMBTGPSUIFUPUBMCBTLFUJOBOE5IFTFWBMVFTBSFBWFSBHFWBMVFTGPSUIFZFBS5IFMBTUDPMVNOTIPXT UIFQFSDFOUBHFJODSFBTFTGPSFBDIHSPVQBOEGPSUIFUPUBMCf*ckFFOBOE /PUFUIBUIPVTJOH USBOTQPSUBOEGPPEFBDISFQSFTFOUTBTJHOJmDBOUQPSUJPOPGUIFCBTLFU*UGPMMPXTUIFSFGPSFUIBU changes in the prices of food, housing and transport had a major impact on movements in the CPI. 5IFmHVSFBUUIFCPUUPNPGUIFMBTUDPMVNO QFSDFOU JTUIFmHVSFUIBUJTVTVBMMZUBLFOUPCFUIFBWFSBHF 4PVUI"GSJDBOJOnBUJPOSBUFJO8FFYBNJOFUIFNFBTVSFNFOUPGJOnBUJPOJONPSFEFUBJMJO$IBQUFS*O#PY XFFYQMBJOIPXUIF$1*DBOCFVTFEUPDBMDVMBUFDIBOHFTJOQVSDIBTJOHQPXFS

13.6 Measuring the links with the rest of the world: the balance of payments The fourth macroeconomic objective concerns a country’s economic links with other countries. Each country keeps a record of its transactions with the rest of the world. This accounting record is called the balance of payments. The South African balance of payments summarises the transactions between South African households, firms and government and foreign households, firms and governments during a particular period (usually a year) – see Box 13-7. The balance of payments consists primarily of two major accounts, the current account and the financial account.

BOX 13-6 CHANGES IN PURCHASING POWER 5IFEJGGFSFODFCf*ckFFOOPNJOBMWBMVFTBOESFBMWBMVFTXBTFYQMBJOFEJO#PY*OUIBUCPYXFBMTPJOEJDBUFE UIBUSFBMWBMVFTSFGFSUPQVSDIBTJOHQPXFS/PXUIBUZPVLOPXTPNFUIJOHBCPVUUIF$1* XFDBOFYQMBJOUIF meaning of changes in purchasing power with the aid of numerical examples. "UUIFUJNFPGXSJUJOH UIFCBTFQFSJPEPGUIF4PVUI"GSJDBO$1*XBT%FDFNCFS*O UIF$1*XBT *OUIF$1*XBT 5IFJODSFBTFJOUIF$1*Cf*ckFFOBOEXBTUIVT QFSDFOU o u 5IJT NFBOU UIBU UIF CBTLFU PG HPPET BOE TFSWJDFT QVSDIBTFE CZ UIF BWFSBHF DPOTVNFSDPTU QFSDFOUNPSFJOUIBOJO"OPUIFSXBZPGTUBUJOHUIJTJTUIBUUIFQVSDIBTJOH QPXFSPGBHJWFOBNPVOUPGNPOFZEFDMJOFECf*ckFFOBOE *GBQBSUJDVMBSCBTLFUPGHPPETBOETFSWJDFTDPTU3 JO JUXPVMEIBWFDPTU3 JO 5IVT XIFSFBT3 XBTFOPVHIUPCVZPOFCBTLFUJO JUDPVMEPOMZCVZBGSBDUJPOPGBCBTLFUJO 5IJTGSBDUJPOJTHJWFOCZUIFSBUJPCf*ckFFOUIFQSJDFMFWFMTJOBOESFTQFDUJWFMZ UIBUJT ù ––––– ù #f*ckFFOBOEUIFQVSDIBTJOHQPXFSPGUIFDPOTVNFSTSBOEUIVTGFMMGSPN3 UP3 JF cents). 4VQQPTF 4BOESB +PIOTPO FBSOFE 3 QFS NPOUI JO "DDPSEJOH UP PVS FYBNQMF TIF DPVME BU 3 QFS CBTLFU IBWF QVSDIBTFE CBTLFUT QFS NPOUI JO *G IFS nominal income remained VODIBOHFECf*ckFFOBOE UIFreal value or purchasing power of her income would have fallen. In TIFXPVMEIBWFCFFOBCMFUPBGGPSEPOMZ CBTLFUT JF3 EJWJEFECZ3 1SJDFJODSFBTFT (ie inflation) therefore erode the real value or purchasing power of a fixed nominal amount. The real value JTPCUBJOFECZEJWJEJOHUIFOPNJOBMBNPVOUCZUIFQSJDFMFWFM"TUIFQSJDFMFWFMJODSFBTFT UIFSFBMWBMVFPGUIF nominal amount falls. The relationship between nominal values, prices and real values (or purchasing power) can be used to calculate WBSJPVTUIJOHT'PSFYBNQMF XFDBODBMDVMBUFUIBUTPNFUIJOHXIJDIDPTU3 JOXPVMEIBWFDPTUBCPVU DFOUTJO1VUEJGGFSFOUMZ DPNQBSFEUPBSBOEXBTXPSUIPOMZ DFOUTJO/PUFUIBUXFDBO NBLFTVDIDPNQBSJTPOTPOMZJGUIFCBTFZFBSJTDMFBSMZTQFDJmFE"TUBUFNFOUTVDIBTiUIFSBOEJTPOMZXPSUI DFOUTUPEBZwJTNFBOJOHMFTTVOMFTTUIFCBTFZFBSJTTQFDJmFE8FUIFSFGPSFIBWFUPTBZ GPSFYBNQMF UIBUJO UIFSBOEXBTXPSUIPOMZDFOUT PSQFSDFOU DPNQBSFEUPXIBUJUXBTXPSUIJO %VSJOHBQFSJPEPGJOnBUJPO UIFQVSDIBTJOHQPXFSPGBHJWFOOPNJOBMBNPVOUGBMMT1SJDFTDBO IPXFWFS BMTP EFDSFBTF'PSFYBNQMF Cf*ckFFOBOEQSJDFTBDUVBMMZGFMMJO4PVUI"GSJDB"TBSFTVMUUIFQVSDIBTJOH power (or realWBMVF PG3 JODSFBTFECZQFSDFOUCf*ckFFOBOE

CH A P T ER 13 M E A S U RING THE PE RF ORM ANCE OF THE ECONOMY

249

BOX 13-7 ALL TRANSACTIONS WITH THE REST OF THE WORLD ARE RECORDED IN THE BALANCE OF PAYMENTS 5IFCBMBODFPGQBZNFOUTJTBMXBZTDPNQJMFECZBOPGmDJBMBHFODZ*O4PVUI"GSJDBJUJTDPNQJMFECZUIF4PVUI "GSJDBO 3FTFSWF #BOL XJUI UIF 4PVUI "GSJDBO 3FWFOVF 4FSWJDF CFJOH POF PG JUT NPTU JNQPSUBOU TPVSDFT PG information. 5IF GBDU UIBU UIF CBMBODF PG QBZNFOUT JT BO PGmDJBM EPDVNFOU PGUFO DSFBUFT UIF JMMVTJPO UIBU JU POMZ SF cords transactions between the government and foreign governments, or that the government somehow DPOUSPMT PSJTSFTQPOTJCMFGPS BMMUIFUSBOTBDUJPOTXJUIUIFSFTUPGUIFXPSME5IJTJTOPUUIFDBTF5IF4PVUI "GSJDBOCBMBODFPGQBZNFOUTJTTJNQMZBTVNNBSZSFDPSEPGUIFUSBOTBDUJPOTPGall4PVUI"GSJDBOIPVTFIPMET firms and levels of government with households, firms or governments in the rest of the world.

t +VTUBTFBDICVTJOFTTLFFQTBSFDPSEPGJUTQVSDIBTFTBOETBMFTPGHPPETBOETFSWJDFT TPEPFTBDPVOUSZ"MM the sales of goods and services to the rest of the world (ie exports), all the purchases of goods and services from the rest of the world (ie imports) as well as all the primary income receipts and payments are recorded in the current account of the balance of payments. t +VTUBTFWFSZPOFXJUIBCBOLBDDPVOUIBTBOBDDPVOUJOHTUBUFNFOUTIPXJOHBMMUIFGVOETHPJOHJOUPUIFBDDPVOU and all the funds going out of the account, so does a country. All the purely financial flows in and out of the country, like purchases and sales of assets such as bonds and shares, are recorded in the financial account of the balance of payments. If there is a surplus on the current account, it indicates that the value of the country’s exports exceeded the value of its imports during the period under review. If there is a deficit, then imports were greater than exports. Likewise, if there is a surplus on the financial account, it indicates that more funds flowed into the country than flowed out during the period concerned. In this case we say that there was a net inflow of foreign capital into the country. If there is a deficit, it indicates that the outflows exceeded the inflows. We then say that there was a net outflow of foreign capital. *UJTQPTTJCMFGPSCPUIUIFDVSSFOUBDDPVOUBOEUIFmOBODJBMBDDPVOUUPCFJOTVSQMVTPSJOEFmDJU*GXFBEEUIF UXPCBMBODFT JFUIFCBMBODFPODVSSFOUBDDPVOUBOEUIFCBMBODFPOmOBODJBMBDDPVOU

XFPCUBJOUIFchange in the countr y’s gold and foreign exchange reser ves. This change serves as the balancing item on the balance of payments. 5PJMMVTUSBUFUIFWBSJPVTDPNQPOFOUT 4PVUI"GSJDBTCBMBODFPGQBZNFOUTBDDPVOUTGPSBOEBSFQSFTFOUFE JO5BCMF/PUFUIBUUIFZBMTPDPOUBJOBDBQJUBMUSBOTGFSBDDPVOU5IJTBDDPVOUJT IPXFWFS SFMBUJWFMZJOTJHOJmDBOU and is not discussed further here. We now take a closer look at some of the items in the balance of payments.

Current account Merchandise exports and imports require no further explanation. These items simply reflect the rand value of the goods exported and imported during the period. Together with net gold exports they constitute what is often referred to as the trade balance. The next important set of items is ser vice receipts and payments for ser vices. Trade in services includes the USBOTQPSUBUJPOPGHPPETBOEQBTTFOHFSTCf*ckFFODPVOUSJFT USBWFM DPOTUSVDUJPOTFSWJDFT mOBODJBMBOEJOTVSBODF services, various business, professional and technical services, as well as personal, cultural and recreational services and government services. Money spent by tourists on food and accommodation while travelling in foreign countries falls in this category. The third item in the current account of the balance of payments represents the UPUBMWBMVFPGBMMTFSWJDFSFDFJQUTEVSJOHUIFQFSJPEDPODFSOFE FHUIFNPOFZTQFOUCZGPSFJHOUPVSJTUTJO4PVUI "GSJDB

XIJMFUIFTJYUIJUFNSFQSFTFOUTUIFUPUBMWBMVFPGQBZNFOUTGPSTFSWJDFT FHUIFNPOFZTQFOUCZ4PVUI "GSJDBOTXIFOUSBWFMMJOHBCSPBE *O 4PVUI"GSJDBT DBTF UIF QBZNFOUT GPS TFSWJDFT BSF MBSHFS UIBO UIF TFSWJDF receipts. The last important set of items is income receipts and income payments. Income receipts refer to income FBSOFECZ4PVUI"GSJDBOSFTJEFOUTJOUIFSFTUPGUIFXPSME XIJMFJODPNFQBZNFOUTSFGFSUPJODPNFFBSOFECZOPO residents in South Africa. There are two categories of income flows: compensation of employees and investment JODPNF $PNQFOTBUJPO PG FNQMPZFFT JODMVEFT XBHFT TBMBSJFT BOE PUIFS CFOFmUT FBSOFE CZ JOEJWJEVBMT GSPN DPVOUSJFTPUIFSUIBOUIPTFJOXIJDIUIFZBSFSFTJEFOU JFGSPNUIFSFTUPGUIFXPSME *OWFTUNFOUJODPNFJODMVEFT EJWJEFOET JOUFSFTU QSPmUTBOEPUIFSGPSNTPGJODPNFFBSOFEGSPNUIFQSPWJTJPOPGmOBODJBMDBQJUBM*ODPNFSFDFJQUT

250

C HA P T E R 1 3 MEA SURI NG THE PERFORMA NCE OF THE E CON OM Y

TABLE 13-6 South Africa’s balance of payments, 2012 and 2013 2012 2013 (R millions) (R millions) Current account Merchandise exports

743 811

853 715

Net gold exports

71 050

63 887

Service receipts

124 332

136 751

Income receipts

48 501

64 441

less Merchandise imports

–854 439

–991 186

less Payments for services

–145 006

–158 356

less Income payments

–121 428

–135 765

–31 369

–30 666

–164 548

–197 179

239

243

Net direct investment

12 900

24 795

Net portfolio investment

54 477

2 740

107 688

54 320

175 065

81 855

–1 801

119 739

8 955

4 658

16

–31

24 141

84 613

11

7

Current transfers (net receipts +) Balance on current account Capital transfer account (net receipts +) Financial account

Net other investment Balance on financial account Unrecorded transactions Change in net gold and other foreign reserves owing to balance of payments transactions Change in liabilities related to reserves SDR allocations and valuation adjustments Net monetisation (+)/demonetisation (–) of gold Change in gross gold and other foreign reserves rce

ou

rican

eser e an

Q

33 123000

89 247000

arc 2014

JOUIFCBMBODFPGQBZNFOUTBSFFRVBMUPUIFiQSJNBSZJODPNFGSPNUIFSFTUPGUIFXPSMEwJEFOUJmFEJOUIFOBUJPOBM BDDPVOUT-JLFXJTF JODPNFQBZNFOUTJOUIFCBMBODFPGQBZNFOUTBSFFRVBMUPUIFiQSJNBSZJODPNFUPUIFSFTUPG UIFXPSMEwJEFOUJmFEJOUIFOBUJPOBMBDDPVOUT3FDBMMUIBUHSPTTOBUJPOBMJODPNF (/* JTFRVBMUPHSPTTEPNFTUJD QSPEVDU (%1 QMVTQSJNBSZJODPNFGSPNUIFSFTUPGUIFXPSMENJOVTQSJNBSZJODPNFUPUIFSFTUPGUIFXPSME The last item in the current account is current transfers. This entry includes social security contributions and CFOFmUT UBYFTJNQPTFECZHPWFSONFOU BOEQSJWBUFUSBOTGFSTPGJODPNFTVDIBTHJGUT QFSTPOBM JNNJHSBOUBOE other remittances and charitable donations. By transfers we mean money, goods or services transferred without BOZUIJOH UBOHJCMF CFJOH SFDFJWFE JO SFUVSO JF XJUIPVU BOZ RVJE QSP RVP *O 4PVUI "GSJDBT DBTF UIF DVSSFOU USBOTGFSQBZNFOUTBSFVTVBMMZTJHOJmDBOUMZHSFBUFSUIBOUIFDVSSFOUUSBOTGFSSFDFJQUT 0OFPGUIFNPTUTJHOJmDBOUGFBUVSFTPG5BCMFJTUIFMBSHFEFmDJUTPOUIFDVSSFOUBDDPVOUPGUIFCBMBODFPG payments, indicated by the negative balances in the table.

Financial account The second main component of the balance of payments is the financial account, which records international USBOTBDUJPOTJOBTTFUTBOEMJBCJMJUJFT5IFmOBODJBMBDDPVOUIBTUISFFNBJODPNQPOFOUTEJSFDUJOWFTUNFOU QPSUGPMJP investment and other investment. Direct investment includes all transactions where the purpose of the investor

CH A P T ER 13 M E A S U RING THE PE RF ORM ANCE OF THE ECONOMY

251

is to gain control of or have a meaningful say in the management of the enterprise in which the investment is made FHUISPVHIUIFFTUBCMJTINFOUPGOFXCVTJOFTTFTPSUIFBDRVJTJUJPOPGTIBSFTJOFYJTUJOHCVTJOFTTFT Portfolio investment, on the other hand, refers to purchases of assets such as shares or bonds where the investor is JOUFSFTUFEPOMZJOUIFFYQFDUFEmOBODJBMSFUVSOPOUIFJOWFTUNFOUOther investment is a residual category which JODMVEFTBMMmOBODJBMUSBOTBDUJPOTOPUJODMVEFEVOEFSEJSFDUJOWFTUNFOUPSQPSUGPMJPJOWFTUNFOU*UJODMVEFTMPBOT DVSSFODZ BOE EFQPTJUT "O JNQPSUBOU DBUFHPSZ PG PUIFS JOWFTUNFOU JT TIPSUUFSN USBEF DSFEJU XIJDI JT VTFE UP mOBODFJNQPSUTBOEFYQPSUT8IFOB4PVUI"GSJDBOJNQPSUFSQVSDIBTFTGPSFJHOHPPET UIFUSBOTBDUJPOJTPGUFO mOBODFEUISPVHITIPSUUFSNUSBEFDSFEJUPCUBJOFEBCSPBE-JLFXJTF 4PVUI"GSJDBOFYQPSUTUPPUIFSDPVOUSJFTNBZ BMTPCFmOBODFEUISPVHIDSFEJUHSBOUFEUPUIFGPSFJHOJNQPSUFST *O5BCMFEJSFDUJOWFTUNFOU QPSUGPMJPJOWFTUNFOUBOEPUIFSJOWFTUNFOUBSFBMMTIPXOPOBnet basis. In other XPSET UIFPVUnPXT EFCJUT IBWFCFFOEFEVDUFEGSPNUIFJOnPXT DSFEJUT 5IFbalance on financial account can be obtained by adding net direct investment, net portfolio investment and net other investment. As indicated in 5BCMF TVSQMVTFTXFSFSFDPSEFEPOUIF4PVUI"GSJDBOmOBODJBMBDDPVOUJOBOE5IFTFTVSQMVTFTXFSF UZQJDBMPGUIF4PVUI"GSJDBOFYQFSJFODFGSPN XJUImOBODJBMBDDPVOUTVSQMVTFTHFOFSBMMZCFJOHMBSHFFOPVHI UPmOBODFDVSSFOUBDDPVOUEFmDJUT

Unrecorded transactions The next item is unrecorded transactions4JODFBEPVCMFFOUSZBDDPVOUJOHTZTUFNJTVTFEUPSFDPSECBMBODF of payments transactions, the net sum of all credit and debit entries should, in principle, equal the change in UIF DPVOUSZT OFU HPME BOE PUIFS GPSFJHO SFTFSWFT *O QSBDUJDF IPXFWFS UIJT EPFT OPU IBQQFO "MM FSSPST BOE omissions that occur in compiling the individual components of the balance of payments are entered as unrecorded transactions. Unrecorded transactions therefore serve to ensure that the balance of payments actually balances.

Gold and other foreign reserves 5IF TVN PG UIF DVSSFOU BDDPVOU CBMBODF UIF DBQJUBM USBOTGFS CBMBODF UIF mOBODJBM BDDPVOU CBMBODF BOE UIF VOSFDPSEFEUSBOTBDUJPOTJTSFnFDUFEJOUIFDIBOHFJOGPSFJHOSFTFSWFT"QPSUJPOPG4PVUI"GSJDBTHPMEQSPEVDUJPO JTIFMECZUIF4"3#BTQBSUPGUIFDPVOUSZTGPSFJHOSFTFSWFT*GOFDFTTBSZ UIFHPMESFTFSWFTDBOCFTPMEUPPCUBJO GPSFJHODVSSFODZ FH64EPMMBST 4PVUI"GSJDBTGPSFJHOSFTFSWFTUIVTDPOTJTUPGgold and other foreign reser ves. 5BCMFBMTPTIPXTUIBUUIFSFJTBEJGGFSFODFCf*ckFFODIBOHFTJOnet and gross foreign reserves. The change in net gold and other foreign reser ves reflects the combined balance on the current, capital transfer and mOBODJBMBDDPVOUTBOEUIFVOSFDPSEFEUSBOTBDUJPOT5IJTJTXIZJUJTEFTDSJCFEBTUIFDIBOHFiPXJOHUPCBMBODFPG QBZNFOUTUSBOTBDUJPOTw5IFBVUIPSJUJFTDBO IPXFWFS TVQQMFNFOUUIFSFTFSWFTCZCPSSPXJOHTQFDJmDBMMZGPSUIJT QVSQPTF5IJTJODSFBTFTUIFDPVOUSZTSFTFSWFT CVUUIFJODSFBTFJTPOMZBiHSPTTwDIBOHFTJODFUIFMPBOTPCUBJOFE have to be repaid as soon as the balance of payments improves. When the loans are repaid, the gross reser ves decline accordingly. "TTIPXOJO5BCMF 4PVUI"GSJDBTOFUBOEHSPTTHPMEBOEPUIFSGPSFJHOSFTFSWFTCPUIJODSFBTFEJOBOE

13.7 Measuring inequality: the distribution of income The fifth macroeconomic objective concerns the distribution of income among individuals or households.1 As we have indicated, the measurement of the performance of the economy in respect of the macroeconomic objectives is no easy task. The most difficult of all to measure is the distribution of income. To obtain an accurate picture of the distribution of income we must have reliable information about the income of each individual or household in the economy during a particular period. This information is difficult to obtain. Nevertheless, researchers use data from population censuses, tax returns and other sources to estimate the distribution of income. Once this information has been obtained, certain measures or criteria then have to be applied to estimate the degree of equality or inequality. This whole process is difficult and time-consuming. Estimates of the distribution of income are therefore only undertaken sporadically. In this section we explain three of the measures that are often used to measure the equality or inequality of the distribution of income, once the necessary basic information has been obtained.

Lorenz curve The first measure is the Lorenz cur ve (named after the American statistician Max O Lorenz who developed it in 1905). The Lorenz curve is a simple graphic device which illustrates the degree of inequality in the distribution of income (or any other variable). We first explain the Lorenz curve and then use a simple example to show how it is constructed. 1. The personal distribution of income differs from the functional distribution of income, which refers to the distribution of income between the different factors of production.

252

C HA P T E R 1 3 MEA SURI NG THE PERFORMA NCE OF THE E CON OM Y

Cumulative percentage of income

To construct the Lorenz curve illustrating the distribution of income, the different individuals or households in the economy first have to be ranked from poorest to richest. This is done on a cumulative percentage basis. In other words, we start with the poorest per cent of the population, the second poorest per cent and so on until we come to the richest per cent of the population. The cumulative percentages of the population are plotted along the horizontal axis. The vertical axis shows the cumulative percentage of total income. In other words, if the poorest per cent of the population earns 0,1 per cent of the total income in the economy, that number will be plotted vertically above the first per cent of the population. If the second poorest per cent of the population earns 0,2 per cent of the total income in the economy, it means that the first two per cent earned a cumulative share of 0,3 per cent (ie 0,1 plus 0,2 per cent) of the income. This number (0,3) will then be plotted vertically above the 2 on the horizontal axis. The construction of the Lorenz curve can be explained with TABLE 13-7 A hypothetical income distribution the aid of a simple example. Table 13-7 shows a hypothetical distribution of income. To keep things simple, we show only the Percentage Cumulative percentage income of each successive 20 per cent of the population. Population Income Population Income The first two columns in Table 13-7 contain the basic data. Poorest 20% 3 20 3 The last two columns are simply the cumulative totals. For Next 20% 7 40 10 example, these two columns show that the first 60 per cent of Next 20% 15 60 25 the population (the poorest 60 per cent) earn 25 per cent of the Next 20% 25 80 50 total income. Richest 20% 50 100 100 The last two columns are then plotted as in Figure 13-1. Point a shows that the poorest 20 per cent of the population earns 3 per cent of the income, point c shows that the poorest 60 per FIGURE 13-1 A Lorenz curve cent of the population earns 25 per cent of the income, and so on. B 100 Note two other features of the diagram. The first is that the 90 axes have been joined to form a square. The second feature is the diagonal running from the origin 0 (bottom left) to the 80 opposite point B (top right) of the rectangle. The diagonal 70 serves as a reference point. It indicates a perfectly equal 60 distribution of income. Along the diagonal the first 20 per 50 d cent of the population receives 20 per cent of the total income, the first 40 per cent receives 40 per cent, and so on. Like the 40 diagonal, any Lorenz curve must start at the origin 0 (since 0 30 c per cent of the population will earn 0 per cent of the income) 20 and end at B (since 100 per cent of the population will earn 100 10 b per cent of the income). a A The degree of inequality is shown by the deviation from 0 20 40 60 80 100 the diagonal. The greater the distance between the diagonal and the Lorenz curve, the greater the degree of inequality. Cumulative percentage of population In Figure 13-1 the area between the diagonal and the Lorenz curve has been shaded. This shaded area is called the The cumulative percentage of the population (from area of inequality. The greatest possible inequality will be poor to rich) is shown on the horizontal axis. The where one person earns the total income. If that is the case, cumulative percentage of income is shown on the the Lorenz curve will run along the axes from 0 to A to B. vertical axis. The line that goes through a, b, c and

Gini coefficient

d is the Lorenz curve. The diagonal 0B is the line of perfect equality. The shaded area is the area of inequality.

Another measure of inequality is the Gini coefficient (or Gini ratio), named after the Italian demographer, Corrodo Gini, who invented it in 1912. This is obtained by dividing the area of inequality shown by a Lorenz curve by the area of the right-triangle formed by the axes and the diagonal (the line of equality). In Figure 13-1 the latter area is shown by the triangle formed by points 0, A and B. The Gini coefficient can vary between 0 and 1. The Gini coefficient is sometimes also multiplied by 100 to obtain the Gini index, which varies between 0 and 100.

CH A P T ER 13 M E A S U RING THE PE RF ORM ANCE OF THE ECONOMY

253

If incomes are distributed perfectly equally, the Gini coefficient is zero. In this case the Lorenz curve coincides with the line of perfect equality (the diagonal) and the area of inequality is therefore zero. At the other extreme, if the total income goes to one individual or household (ie if the incomes are distributed with perfect inequality) the Gini coefficient is one. In this case the area of inequality will be the same as the triangle 0AB. In practice the Gini coefficient usually ranges between about 0,30 (highly equal) and about 0,70 (highly unequal).

Quantile ratio A third possible way of expressing the equality or inequality of the distribution of income is to use a quantile ratio. A quantile ratio is the ratio between the percentage of income received by the highest x per cent of the population and the percentage of income received by the lowest y per cent of the population. For example, we can compare the income received by the top 20 per cent with that earned by the bottom 20 per cent of the population. Using the figures in Table 13-7, the answer will be 50 ÷ 3 = 16,7. The higher the ratio, the greater the degree of inequality. The ratio between the top 20 per cent and the lowest 40 per cent (50 ÷ 10 = 5 in our example) is also often used to compare income distributions between countries.

The distribution of income in South Africa It is widely accepted that South Africa has one of the most unequal distributions of personal income in the world. 5IF 4PVUI "GSJDBO (JOJ DPFGmDJFOU IBT CFFO FTUJNBUFE UP CF BT IJHI BT XIJDI JT POF PG UIF IJHIFTU (JOJ DPFGmDJFOUTFWFSFTUJNBUFEJOUIFXPSME 4PVUI"GSJDBTQFSTPOBMJODPNFEJTUSJCVUJPOIBTUSBEJUJPOBMMZGPMMPXFESBDJBMMJOFT XJUIXIJUFTFBSOJOHUIFNPTU followed by Asians, coloureds and blacks. In recent years, however, the gaps between the different races have become smaller. At the same time, the distribution within the black group has become much more unequal. This may be ascribed, on the one hand, to the relatively fast rate of increase in the remuneration of blacks employed in the formal sector of the economy and, on the other hand, to increasing unemployment and increased poverty. As a result, the inequality within the black group tends to mirror the inequality in the society at large.

IMPORTANT CONCEPTS

Economic growth Full employment/unemployment Price stability/inflation Balance of payments (or external) stability Distribution of income Gross domestic product (GDP) Final and intermediate goods Value added Production method Expenditure method Income method Market prices Basic prices

254

Factor cost Current prices Constant prices Nominal GDP Real GDP Gross national income (GNI) Net primary income payments Consumption of fixed capital Gross domestic expenditure (GDE) Purchasing power Specific index General (composite) index Consumer price index Balance of payments

Current account Financial account Trade balance Direct investment Portfolio investment Other investment Unrecorded transactions Gold and other foreign reserves Gross reserves Net reserves Lorenz curve Gini coefficient Gini index

C HA P T E R 1 3 MEA SURI NG THE PERFORMA NCE OF THE E CON OM Y

monetary 4 The sector Chapter overview 14.1 The functions of money 14.2 Different kinds of money 14.3 Money in South Africa 14.4 Financial intermediaries 14.5 The South African Reserve Bank 14.6 The demand for money 14.7 The stock of money: how is money created? 14.8 Monetary policy 14.9 Bank supervision 14.1 Concluding remarks Appendix 14-1: Keynes’s speculative demand for money Important concepts

Money is a good servant but a bad master. ENGLISH PROVERB

Money speaks in a language all nations understand. APHRA BEHN

Man is not nourished by money. He does not clothe himself with gold, he does not warm himself with silver. FRÉDÉRIC BASTIAT

Money is like muck, not good except it be spread. FRANCIS BACON

A bank is a place that will lend you money if you can prove that you don’t need it. BOB HOPE

Learning outcomes Once you have studied this chapter you should be able to 䡲 䡲 䡲 䡲 䡲 䡲

describe the functions of money define money describe the main functions of the South African Reserve Bank explain the demand for money explain how money is created explain the basic instruments of monetary policy

M

oney is one of the most important institutions in the economy. Money, it is said, talks, makes the man (or woman), and makes the world go around. The Bible says that the love of money is the root of all evil. Everyone is fascinated by money. Writers write about it, singers sing about it and people dream about having enough money to satisfy all their wants. Through the centuries, money has taken different forms; cattle, seashells, cigarettes and gold have all served as money. In modern societies paper money is issued by central banks. The American comedian, Will Rogers, once said that there have been three great inventions since the beginning of time: fire, the wheel and central banking. Money is indeed a fascinating subject. In this chapter we take a closer look at money and financial institutions. We start by examining the functions of money. This enables us to define money. We then look at different forms of money and how money is measured in South Africa. This is followed by brief discussions of financial intermediaries and the role of the South African Reser ve Bank. We then examine the demand for money and the way in which money is created. We conclude the chapter with a discussion of monetar y policy. 255

Most people think that economics is largely concerned with money and with activities aimed at making money. Economists are therefore invariably approached for tips about how to become rich quickly. But you have now studied 13 chapters of this book without examining the properties, functions and role of money. It should thus be clear that much of economics is not concerned with money. It is also a mistake to assume that economists are good business people or that they are skilled at making money. Of Adam Smith, the founder of modern economics, it was said: “He was the most unbusinesslike of mankind. He was an awkward Scotch professor … choked with books and absorbed in abstractions. He was never engaged in any sort of trade, and would probably never have made sixpence by any if he had been.”1 In earlier chapters we have pointed out that money is not a factor of production and that it should not be confused with income or wealth. We did show, however, that money was an important invention, since it eliminates the need for a double coincidence of wants which is a feature of the barter system. The time has now come to take a closer look at money. Although everyone agrees that money is an important invention, there is still a lot of controversy about the role of money in the economy. After centuries of serious thought and analysis there is still no generally accepted theory about how money influences economic activity. It should be obvious that there can be no mechanical or technical connection between the quantity of money in the economy and the level of production and income. If this were the case, the world’s poverty and development problems could have been solved long ago by printing more money. Although there is no simple relation between money and real economic activity, economists nowadays accept that the influence of money on the economy is not entirely neutral. The supposed neutrality of money was for many years the cornerstone of classical economic theory. It was thought that the amount of money in circulation could influence only the absolute price level (eg a doubling of the money stock would lead to a doubling of the price level) without having any real effects on production or welfare. Today, however, economists think differently about money. But before we can take a closer look at the way in which money affects economic activity (and the way in which economic activity affects money), we first have to examine a few of the basic characteristics of money and of the financial system. In this chapter we deal with the functions of money, its definition, and with the factors and institutions which determine the quantity of and demand for money, and interest rates. We also look at the role of the South African Reserve Bank and at monetary policy. The important question of how monetary variables are supposed to influence economic activity is examined in Chapter 19.

14.1 The functions of money Money as a medium of exchange Money is such an integral part of our daily lives that its significance is not always appreciated. To explain the importance of money, we look at the functioning of a barter economy, that is, an economy that functions without money. In a barter economy goods can only be exchanged for other goods. For example, a wheat farmer who needs clothing for his family first has to find a tailor who needs wheat. Then the exchange can take place. If no tailor who happens to want wheat can be found, the farmer will be obliged to exchange the wheat for something else that the tailor does require. In other words, before the exchange of two goods can take place, there has to be a double coincidence of wants between the parties concerned. A barter economy is therefore characterised by numerous unnecessary exchange transactions which are cumbersome and inefficient. For each thing you need, you have to find someone who can, and will, exchange his or her goods (ie the things you need) for your goods. The inefficiency of the barter economy led, even in early primitive communities, to the use of some form of money. The advantages of a monetar y economy, where exchange takes place through the medium of money, are just as obvious as the disadvantages of a barter economy. In a monetary economy a double coincidence of wants between parties is no longer required. The farmer no longer has to look for a tailor who needs wheat. As long as a buyer can be found for the wheat, the money received in exchange for the wheat can be used to buy clothes. Money therefore serves as a lubricant or intermediar y to smooth the process of exchange and to make it more efficient. This is the first and most basic function of money. Money functions as a medium of exchange. When we discuss the other functions of money, you will see that this function is the only one that is unique to money. It can therefore be used to define money: Money is anything that is generally accepted as payment for goods and ser vices or that is accepted in settlement of debt. If you look carefully at the wording of the definition, you will realise that it actually says that money is what money does. The meaning of money is so difficult to describe, that we are obliged to define it in terms of its main function. Money is a generally acceptable means of payment. Moreover, it is accepted as payment because people believe that it will be accepted as payment by other people. 1. Walter Bagehot, as quoted in James, S. 1984. A dictionary of economic quotations, 2nd edition. London: Croom Helm, 162.

256

C HA P T E R 1 4 THE MONETA RY SE CT OR

Money as a unit of account A unit of account is an agreed measure for stating the prices of goods and services. In a money economy the prices of all goods and services are expressed in monetary terms. Money thus functions as a unit of account. We need a common measure of the cost of various goods and services to be able to decide how best to spend our income. The fact that income and prices are all expressed in rand and cents enables us to calculate what we can afford. If we know that a beer costs R12 and a soft drink costs R8, then we can also immediately calculate the opportunity cost of a beer in terms of the number of soft drinks that we have to sacrifice for a beer. In addition, the use of money as a unit of account enables us to obtain measures of the total value of all goods and services produced in the economy, such as GDP. Money is not, however, the only possible unit of account. Any other commodity or product can serve as a unit of account. The item used as the medium of exchange (money) is simply the most convenient unit of account. The function of money as a unit of account is closely related to its function as a medium of exchange. What serves as a medium of exchange usually also fulfils the function of an accounting unit. The accounting unit function is, however, secondary to the medium of exchange function. Money can also lose some of its usefulness as a unit of account during inflation. When prices increase, monetary or nominal values have to be adjusted for price increases to obtain real values, which are more meaningful.

Money as a store of value Money is also a store of value. In any society there is a need to hold wealth (or surplus production) in some form or another. A common form for holding wealth is money, since it can always be exchanged for other goods and services at a later date. Wealth can, however, also be held in other forms, such as fixed property, real assets, stocks and shares. The advantage of using money as a store of value lies in the fact that it is usually more convenient and can be used immediately in exchange for other assets. We therefore say that money is the most liquid form in which wealth can be kept. But it is not always advantageous to use money as a store of value. In times of high inflation money loses its purchasing power and is not a good store of value. A person who keeps all her wealth in the form of money while there is inflation will soon realise that her wealth is not retaining its value. During inflation there is thus a tendency to use other objects as stores of value, for example, fixed property, shares, works of art and postage stamps. Therefore, unlike the medium of exchange function, the store of value function is not unique to money. The function of money as a unit of account and the store of value function are both derived from the medium of exchange function. If money did not fulfil the function of a medium of exchange, it could not serve as an accounting unit or as a store of value. The store of value function also implies that money serves as a standard of deferred payment. By this we mean that money is the measure of value for future payments. If you borrow money to buy a house, your future commitment will be agreed to in rand and cents. Money is also the means whereby credit is granted.

What money is not We have now defined money and outlined its various functions. It is also important to know what money is not. Money is often confused with other things. Money should not, for example, be confused with income or wealth. Because income and wealth are usually measured or expressed in monetary terms (eg in rand), they are often confused with money. Income is the reward earned in the production process. Natural resources, labour, capital and entrepreneurship are rewarded in the form of rent, wages and salaries, interest and profit. The fact that income is calculated and paid in monetary terms is coincidental. Income is something completely different to money. Wealth consists of assets that have been accumulated over time. Wealth can take many forms, such as fixed property, shares, oriental carpets or paintings. It can, of course, also take the form of money. This is one of the possible reasons for the confusion between wealth and money. Another reason is that wealth, like income, is usually calculated in monetary terms. However, wealth and money are not synonymous. Money forms part of wealth, but wealth consists of other assets as well. In fact, many people who possess great wealth do not possess a great deal of money. They keep most of their wealth in other forms, particularly during inflation, when money loses much of its function as a store of value.

14.2 Different kinds of money Through the ages various goods have served as money. For example, cocoa beans, beads, seashells, tea, cattle, silver and cigarettes (in prisoner of war camps and in jails) have all served as money at one time or another. The earliest forms of money were commodities, where the intrinsic value of the commodity was equal to the exchange value assigned to it. Naturally, certain commodities were more suitable for use as money than others. CH A P T ER 14 T H E MO N E TARY S E CT OR

257

Properties such as uniformity, durability, divisibility and the ability to be carried (which is determined by size and weight) were not to be found in all commodities. For example, cattle are not divisible into “change”, nor can they be carried around easily. In due course this type of commodity money made way for the more efficient coins made of various kinds of metal. Initially iron and copper coins were very popular forms of money, but when they became too abundant they lost their value and were replaced by scarcer metals such as silver and gold. In time, however, the exclusive use of coins as a medium of exchange also became inconvenient as the increasing specialisation of production led to greater dependence on trade. Particularly in large transactions, the coins became unwieldy and difficult to handle. This in turn led to the use of paper money which first appeared in England in the 16th century. The owners of gold (or silver) deposited it for safe-keeping with the goldsmiths of that time. In exchange for such deposits they received certificates of deposit, and these certificates could then be transferred to other persons to pay for goods and services. The certificate of deposit was the first form of paper money fully covered by the metal it was supposed to represent. The next step in the evolutionary process was the replacement of paper money, fully backed by a commodity such as gold, by notes which were only partially covered by a commodity. The gold standard,