HackerRank Kingdom Division problem solution - Programmingoneonone (2024)

In this HackerRank Kingdom Division problem solution we have given a map of the kingdom’s n cities, find and print the number of ways King Arthur can divide it between his two children such that they will not invade each other. As this answer can be quite large, it must be modulo 10 to power 9 plus 7.

HackerRank Kingdom Division problem solution - Programmingoneonone (1)

Problem solution in Python.

#!/bin/python3import mathimport osimport randomimport reimport sysdef countColorings(root): v = {} for depth, node in d: if len(t[node]) == 0: v[(node, True)] = 1 v[(node, False)] = 0 else: cases = 1 invalid = 1 for child in t[node]: cases *= v[(child, True)] + v[(child, False)] invalid *= v[(child, False)] v[(node, True)] = cases v[(node, False)] = cases - invalid return v[(root, False)] * 2def spanningTree(root): stack = [(root, 0)] while stack: node, depth = stack.pop() t[node] = set() d.append((depth, node)) for adj in g[node]: if adj not in t: t[node].add(adj) stack.append((adj, depth + 1))def kingdomDivision(n, roads): global g g = {} for road in roads: if road[0] in g: g[road[0]].add(road[1]) else: g[road[0]] = {road[1]} if road[1] in g: g[road[1]].add(road[0]) else: g[road[1]] = {road[0]} global t t = {} global d d = [] spanningTree(n // 2) d.sort(reverse=True) return countColorings(n // 2) % (10 ** 9 + 7)if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') n = int(input()) roads = [] for _ in range(n-1): roads.append(list(map(int, input().rstrip().split()))) result = kingdomDivision(n, roads) fptr.write(str(result) + 'n') fptr.close()

{“mode”:”full”,”isActive”:false}

Problem solution in Java.

import java.io.*;import java.util.*;import java.text.*;import java.math.*;import java.util.regex.*;public class Solution { //static final boolean RED = true; //static final boolean BLACK = false; static final int SAME = 1; static final int DIFF = 0; static final long MEM = 1000000007; static List<Node> readyNodes = new LinkedList<>(); static class Node { int name; List<Node> neighbors = new ArrayList<>(); Node parent = null; boolean isDone = false; public Node(int name) { this.name = name; } boolean checkReady() { for (Node child : neighbors) { if (!child.isDone) { return false; } } return true; } } static void rootTree(Node child, Node parent) { child.parent = parent; child.neighbors.remove(parent); for (Node superChild : child.neighbors) { rootTree(superChild, child); } if (child.neighbors.isEmpty()) { readyNodes.add(child); } } /* static long howMany(Node child, boolean color, boolean parentColor) { // Need DP here instead if (child.neighbors.isEmpty()) { if (color == parentColor) return 1; else return 0; } long[] redChildren = new long[child.neighbors.size()]; long[] blackChildren = new long[child.neighbors.size()]; long ways = 1; for (int i = 0; i < redChildren.length; i++) { redChildren[i] = howMany(child.neighbors.get(i), RED, color); blackChildren[i] = howMany(child.neighbors.get(i), BLACK, color); ways = (ways * (redChildren[i] + blackChildren[i])) % MEM; } if (color != parentColor) { long sub = 1; if (color == RED) { for (int i = 0; i < blackChildren.length; i++) { sub = (sub * blackChildren[i]) % MEM; if (sub == 0) break; } } else { for (int i = 0; i < redChildren.length; i++) { sub = (sub * redChildren[i]) % MEM; if (sub == 0) break; } } ways = (ways - sub + MEM) % MEM; } return ways; }*/ static long kingdomDivision(int n, Node[] cities) { rootTree(cities[0], null); long[][] ways = new long[n][2]; //ways[nodeName][Diff/Same] for (Node leaf : readyNodes) { ways[leaf.name][SAME] = 1; ways[leaf.name][DIFF] = 0; leaf.isDone = true; } while (!readyNodes.isEmpty()) { List<Node> nextNodes = new LinkedList<>(); for (Node done : readyNodes) { if (done.parent != null && done.parent.checkReady()) nextNodes.add(done.parent); } readyNodes = nextNodes; for (Node node : readyNodes) { long w = 1; for (Node child : node.neighbors) { w = (w * (ways[child.name][SAME] + ways[child.name][DIFF])) % MEM; } ways[node.name][SAME] = w; long sub = 1; for (Node child : node.neighbors) { sub = (sub * (ways[child.name][DIFF])) % MEM; if (sub == 0) break; } ways[node.name][DIFF] = (w - sub + MEM) % MEM; node.isDone = true; } } return (2*ways[0][DIFF]) % MEM; } public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); Node[] cities = new Node[n]; for (int i = 0; i < n; i++) { cities[i] = new Node(i); } for(int i = 0; i < n-1; i++){ int city1 = in.nextInt() - 1; int city2 = in.nextInt() - 1; cities[city1].neighbors.add(cities[city2]); cities[city2].neighbors.add(cities[city1]); } long result = kingdomDivision(n, cities); System.out.println(result); in.close(); }}

{“mode”:”full”,”isActive”:false}

Problem solution in C++.

#include <bits/stdc++.h>#define MOD 1000000007LLusing namespace std;int n,p1,p2;vector <int> adj[100005];typedef long long ll;ll dp[100005][2][2];ll f(int v, int p, int col, int pacol){if(dp[v][col][pacol]>=0ll) return dp[v][col][pacol];dp[v][col][pacol]=1ll;for(int x=0;x<adj[v].size();x++){if(adj[v][x]==p) continue;dp[v][col][pacol]*=f(adj[v][x],v,0,col)+f(adj[v][x],v,1,col);dp[v][col][pacol]%=MOD;}if(col!=pacol){ll temp=1ll;for(int x=0;x<adj[v].size();x++){if(adj[v][x]==p) continue;temp*=f(adj[v][x],v,pacol,col);temp%=MOD;}dp[v][col][pacol]=(dp[v][col][pacol]+MOD-temp)%MOD;}return dp[v][col][pacol];}int main(){memset(dp,-1,sizeof(dp));scanf("%d",&n);for(int x=0;x<n-1;x++){scanf("%d %d",&p1,&p2);adj[p1].push_back(p2);adj[p2].push_back(p1);}printf("%lldn",(f(1,0,0,1)+f(1,0,1,0))%MOD);return 0;}

{“mode”:”full”,”isActive”:false}

Problem solution in C.

#include <stdio.h>#include <stdlib.h>#define MOD 1000000007typedef struct _lnode{ int x; int w; struct _lnode *next;} lnode;void insert_edge(int x,int y,int w);void dfs(int x,int y);long long not_care[100000],safe[100000];lnode *table[100000]={0};int main(){ int n,x,y,i; scanf("%d",&n); for(i=0;i<n-1;i++){ scanf("%d%d",&x,&y); insert_edge(x-1,y-1,0); } dfs(0,-1); printf("%lld",safe[0]*2%MOD); return 0;}void insert_edge(int x,int y,int w){ lnode *t=(lnode*)malloc(sizeof(lnode)); t->x=y; t->w=w; t->next=table[x]; table[x]=t; t=(lnode*)malloc(sizeof(lnode)); t->x=x; t->w=w; t->next=table[y]; table[y]=t; return;}void dfs(int x,int y){ int f=0; long long not_safe=1; lnode *p; not_care[x]=1; for(p=table[x];p;p=p->next) if(p->x!=y){ dfs(p->x,x); f=1; not_care[x]=(not_care[p->x]+safe[p->x])%MOD*not_care[x]%MOD; not_safe=not_safe*safe[p->x]%MOD; } if(!f) safe[x]=0; else safe[x]=(not_care[x]-not_safe+MOD)%MOD; return;}

{“mode”:”full”,”isActive”:false}

HackerRank Kingdom Division problem solution - Programmingoneonone (2024)
Top Articles
Latest Posts
Article information

Author: Carlyn Walter

Last Updated:

Views: 5604

Rating: 5 / 5 (70 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Carlyn Walter

Birthday: 1996-01-03

Address: Suite 452 40815 Denyse Extensions, Sengermouth, OR 42374

Phone: +8501809515404

Job: Manufacturing Technician

Hobby: Table tennis, Archery, Vacation, Metal detecting, Yo-yoing, Crocheting, Creative writing

Introduction: My name is Carlyn Walter, I am a lively, glamorous, healthy, clean, powerful, calm, combative person who loves writing and wants to share my knowledge and understanding with you.